Stability of Sets Criteria for Impulsive Cohen-Grossberg Delayed Neural Networks with Reaction-Diffusion Terms
Abstract
:1. Introduction
2. Preliminaries
3. Stability of Sets
4. Robust Stability of Sets
5. Examples
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cohen, M.A.; Grossberg, S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybern. 1983, 13, 815–826. [Google Scholar] [CrossRef]
- Guo, S.; Huang, L. Stability analysis of Cohen-Grossberg neural networks. IEEE Trans. Neural Netw. 2006, 17, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Huang, L.; Guo, Z.; Hu, Q. Stability analysis of Cohen-Grossberg neural networks with discontinuous neuron activations. Appl. Math. Model. 2010, 34, 358–365. [Google Scholar] [CrossRef]
- Wan, A.; Wang, M.; Peng, J.; Mao, W. Global exponential stability analysis of Cohen-Grossberg neural networks. Math. Appl. (Wuhan) 2006, 19, 381–387. [Google Scholar]
- Gan, Q. Adaptive synchronization of Cohen-Grossberg neural networks with unknown parameters and mixed time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3040–3049. [Google Scholar] [CrossRef]
- Song, Q.; Cao, J. Stability analysis of Cohen-Grossberg neural network with both time-varying and continuously distributed delays. Comput. Appl. Math. 2006, 197, 188–203. [Google Scholar] [CrossRef]
- Yuan, K.; Cao, J.; Li, H. Robust stability of switched Cohen-Grossberg neural networks with mixed time-varying delays. IEEE Trans. Syst. Man Cybern. 2006, 36, 1356–1363. [Google Scholar] [CrossRef]
- Aouiti, C.; Assali, E.A. Nonlinear Lipschitz measure and adaptive control for stability and synchronization in delayed inertial Cohen-Grossberg-type neural networks. Int. J. Adapt. Control 2019. [Google Scholar] [CrossRef]
- Ozcan, N. Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case. Neural Netw. 2019, 113, 20–27. [Google Scholar] [CrossRef]
- Pratap, K.A.; Raja, R.; Cao, J.; Lim, C.P.; Bagdasar, O. Stability and pinning synchronization analysis of fractional order delayed Cohen-Grossberg neural networks with discontinuous activations. Appl. Math. Comput. 2019, 359, 241–260. [Google Scholar] [CrossRef]
- Li, R.; Cao, J.; Alsaedi, A.; Ahmad, B. Passivity analysis of delayed reaction-diffusion Cohen-Grossberg neural networks via Hardy-Poincarè inequality. J. Franklin Inst. 2017, 354, 3021–3038. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H. Global asymptotic stability of reaction-diffusion Cohen-Grossberg neural networks with continuously distributed delays. IEEE Trans. Neral Netw. 2010, 21, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Lv, T. Periodicity of delayed reaction-diffusion high-order Cohen-Grossberg neural networks with Dirichlet boundary conditions. Rocky Mountain J. Math. 2011, 41, 949–970. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, K. Dynamical behaviors of Cohen-Grossberg neural networks with delays and reaction-diffusion terms. Neurocomputing 2006, 70, 536–543. [Google Scholar] [CrossRef]
- Chen, W.H.; Liu, L.; Lu, X. Intermittent synchronization of reaction-diffusion neural networks with mixed delays via Razumikhin technique. Nonlinear Dyn. 2017, 87, 535–551. [Google Scholar] [CrossRef]
- Lu, J.G. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos Solitons Fractals 2008, 35, 116–125. [Google Scholar] [CrossRef]
- Qiu, J. Exponential stability of impulsive neural networks with time-varying delays and reaction-diffusion terms. Neurocomputing 2007, 70, 1102–1108. [Google Scholar] [CrossRef]
- Rakkiyappan, R.; Dharani, S.; Zhu, Q. Synchronization of reaction-diffusion neural networks with time-varying delays via stochastic sampled-data controller. Nonlinear Dyn. 2015, 79, 485–500. [Google Scholar] [CrossRef]
- Stamova, I.M.; Simeonov, S. Delayed reaction-diffusion cellular neural networks of fractional order: Mittag-Leffler stability and synchronization. J. Comput. Nonlinear Dynam. 2018, 13, 011015-1. [Google Scholar] [CrossRef]
- Aouiti, C.; Dridi, F. New results on impulsive Cohen-Grossberg neural networks. Neural Proc. Lett. 2019, 49, 1459–1483. [Google Scholar] [CrossRef]
- Bohner, M.; Stamov, G.T.; Stamova, I.M. Almost periodic solutions of Cohen-Grossberg neural networks with time-varying delay and variable impulsive perturbations. Commun. Nonlinear Sci. Numer. Simul. 2020, 80, 104952. [Google Scholar] [CrossRef]
- Li, X. Exponential stability of Cohen-Grossberg-type BAM neural networks with time-varying delays via impulsive control. Neurocomputing 2009, 73, 525–530. [Google Scholar] [CrossRef]
- Li, X. Existence and global exponential stability of periodic solution for impulsive Cohen-Grossberg-type BAM neural networks with continuously distributed delays. Appl. Math. Comput. 2009, 215, 292–307. [Google Scholar] [CrossRef]
- Li, L.; Jian, J. Exponential convergence and Lagrange stability for impulsive Cohen-Grossberg neural networks with time-varying delays. J. Comput. Appl. Math. 2015, 277, 23–35. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, J. Impulsive Differential Equations and Inclusions, 1st ed.; Hindawi Publishing Corporation: New York, NY, USA, 2006; ISBN: 977594550X; 978-9775945501. [Google Scholar]
- Haddad, W.M.; Chellaboina, V.S.; Nersesov, S.G. Impulsive and Hybrid Dynamical Systems, Stability, Dissipativity, and Control, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2006; ISBN 9780691127156. [Google Scholar]
- Li, X.; Bohner, M.; Wang, C.K. Impulsive differential equations: Periodic solutions and applications. Automatica J. IFAC 2015, 52, 173–178. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, K. Impulsive Systems on Hybrid Time Domains, 1st ed.; Springer: Cham, Switzerland, 2019; ISBN: 978-3-030-06211-8; 978-3-030-06212-5. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Applied Impulsive Mathematical Models, 1st ed.; Springer: Cham, Switzerland, 2016; ISBN: 978-3-319-28060-8; 978-3-319-28061-5. [Google Scholar]
- Li, Z.; Li, K. Stability analysis of impulsive Cohen-Grossberg neural networks with distributed delays and reaction-diffusion terms. Appl. Math. Model. 2009, 33, 1337–1348. [Google Scholar] [CrossRef]
- Li, K.; Song, Q. Exponential stability of impulsive Cohen-Grossberg neural networks with time-varying delay and reaction-diffusion terms. Neurocomputing 2008, 72, 231–240. [Google Scholar] [CrossRef]
- Pan, J.; Liu, X.; Zhong, S. Stability criteria for impulsive reaction-diffusion Cohen-Grossberg neural networks with time-varying delays. Math. Comput. Model. 2010, 51, 1037–1050. [Google Scholar] [CrossRef]
- Pan, J.; Zhong, S. Dynamical behaviors of impulsive reaction-diffusion Cohen-Grossberg neural network with delays. Neurocomputing 2010, 73, 1344–1351. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, H.N.; Guo, L. Stability analysis of reaction-diffusion Cohen-Grossberg neural networks under impulsive control. Neurocomputing 2013, 106, 21–30. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, S.; Li, K. Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1524–1532. [Google Scholar] [CrossRef]
- He, W.; Qian, F.; Cao, J. Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control. Neural Netw. 2017, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, S. Stabilization of delay systems: delay-dependent impulsive control. IEEE Trans. Automat. Control 2017, 62, 406–411. [Google Scholar] [CrossRef]
- Li, X.; Wu, J. Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay. IEEE Trans. Automat. Control 2018, 63, 306–311. [Google Scholar] [CrossRef]
- Stamova, I.M. Impulsive control for stability of n-species Lotka-Volterra cooperation models with finite delays. Appl. Math. Lett. 2010, 23, 1003–1007. [Google Scholar] [CrossRef]
- Stamova, I.M.; Stamov, A.G. Impulsive control on the asymptotic stability of the solutions of a Solow model with endogenous labor growth. J. Franklin Inst. 2012, 349, 2704–2716. [Google Scholar] [CrossRef]
- Stamova, I.; Stamov, G. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers. Neural Netw. 2017, 96, 22–32. [Google Scholar] [CrossRef]
- Sun, J.; Qiao, F.; Wu, Q. Impulsive control of a financial model. Phys. Lett. A 2005, 335, 282–288. [Google Scholar] [CrossRef]
- Yang, X.; Peng, D.; Lv, X.; Li, X. Recent progress in impulsive control systems. Math. Comput. Simul. 2019, 155, 244–268. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, X.; Li, X. Sampled-data based lag synchronization of chaotic delayed neural networks with impulsive control. Nonlinear Dynam. 2017, 90, 2199–2207. [Google Scholar] [CrossRef]
- Colace, F.; Loia, V.; Tomasiello, S. Revising recurrent neural networks from a granular perspective. Appl. Soft Comput. 2019, 82, 105535. [Google Scholar] [CrossRef]
- Hale, J.K.; Verduyn Lunel, S.M. Introduction to Functional Differential Equations, 1st ed.; Springer: New York, NY, USA, 1993; ISBN: 978-0-387-94076-2; 978-1-4612-8741-4; 978-1-4612-4342-7. [Google Scholar]
- Baldwin, S.; Slaminka, E.E. A stable/unstable “manifold” theorem for area preserving homeomorphisms of two dimensions. Proc. Am. Math. Soc. 1990, 109, 823–828. [Google Scholar]
- Bernfeld, S.R.; Corduneanu, C.; Ignatyev, A.O. On the stability of invariant sets of functional differential equations. Nonlinear Anal. 2003, 55, 641–656. [Google Scholar] [CrossRef]
- Parshad, R.D.; Kouachi, S.; Gutierrez, J.B. Global existence and asymptotic behavior of a model for biological control of invasive species via supermale introduction. Commun. Math. Sci. 2013, 11, 971–992. [Google Scholar]
- Li, Z.; Yan, L.; Zhou, X. Global attracting sets and stability of neutral stochastic functional differential equations driven by Rosenblatt process. Front. Math. China 2018, 13, 87–105. [Google Scholar] [CrossRef]
- Ruiz del Portal, F.R. Stable sets of planar homeomorphisms with translation preudo-arcs. Discrete Continuous Dynam. Syst. S 2019, 12, 2379–2390. [Google Scholar] [CrossRef] [Green Version]
- Skjetne, R.; Fossen, T.I.; Kokotovic, P.V. Adaptive output maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica 2005, 41, 289–298. [Google Scholar] [CrossRef]
- Xie, S. Stability of sets of functional differential equations with impulse effect. Appl. Math. Comput. 2011, 218, 592–597. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Liao, X. Robust stability of uncertain impulsive dynamical systems. J. Math. Anal. Appl. 2004, 290, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Stamov, G.T.; Alzabut, J.O. Almost periodic solutions in the PC-space for uncertain impulsive dynamical systems. Nonlinear Anal. 2011, 74, 4653–4659. [Google Scholar] [CrossRef]
- Zecevic, A.I.; Siljak, D.D. Control of Complex Systems: Structural Constraints and Uncertainty, 1st ed.; Springer: New York, NY, USA, 2010; ISBN: 978-1-4419-1215-2; 978-1-4614-2555-7; 978-1-4419-1216-9. [Google Scholar]
- Zhang, X.; Li, X.; Cao, J.; Miaadi, F. Design of memory controllers for finite-time stabilization of delayed neural networks with uncertainty. J. Franklin Inst. 2018, 355, 5394–5413. [Google Scholar] [CrossRef]
- Vidhya, C.; Balasubramaniam, P. Robust stability of uncertain Markovian jumping stochastic Cohen-Grossberg type BAM neural networks with time-varying delays and reaction diffusion terms. Neural Parallel Sci. Comput. 2011, 19, 181–196. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamov, G.; Tomasiello, S.; Stamova, I.; Spirova, C. Stability of Sets Criteria for Impulsive Cohen-Grossberg Delayed Neural Networks with Reaction-Diffusion Terms. Mathematics 2020, 8, 27. https://doi.org/10.3390/math8010027
Stamov G, Tomasiello S, Stamova I, Spirova C. Stability of Sets Criteria for Impulsive Cohen-Grossberg Delayed Neural Networks with Reaction-Diffusion Terms. Mathematics. 2020; 8(1):27. https://doi.org/10.3390/math8010027
Chicago/Turabian StyleStamov, Gani, Stefania Tomasiello, Ivanka Stamova, and Cvetelina Spirova. 2020. "Stability of Sets Criteria for Impulsive Cohen-Grossberg Delayed Neural Networks with Reaction-Diffusion Terms" Mathematics 8, no. 1: 27. https://doi.org/10.3390/math8010027
APA StyleStamov, G., Tomasiello, S., Stamova, I., & Spirova, C. (2020). Stability of Sets Criteria for Impulsive Cohen-Grossberg Delayed Neural Networks with Reaction-Diffusion Terms. Mathematics, 8(1), 27. https://doi.org/10.3390/math8010027