A Characterization of Quasi-Metric Completeness in Terms of α–ψ-Contractive Mappings Having Fixed Points
Abstract
:1. Introduction and Preliminaries
- (i)
- if and only if and
- (ii)
2. Results
- (i)
- is α-admissible;
- (ii)
- there exists such that
- (iii)
- is continuous.
- for all
- for all
- whenever
- for all
- for all and
- otherwise.
- for all
- for all and
- otherwise.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α–ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
- Nieto, J.J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Nieto, J.J.; Rodríguez-López, R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Act. Math. Sin. (Engl. Ser.) 2007, 23, 2205–2212. [Google Scholar] [CrossRef]
- Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2003, 132, 1435–1443. [Google Scholar] [CrossRef]
- Amiri, P.; Rezapur, S.; Shahzad, N. Fixed points of generalized α–ψ-contractions. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. RACSAM 2014, 108, 519–526. [Google Scholar] [CrossRef]
- Bilgili, N.; Karapinar, E.; Samet, B. Generalized α–ψ contractive mappings in quasi-metric spaces and related fixed-point theorems. J. Inequal. Appl. 2014, 2014, 36. [Google Scholar] [CrossRef] [Green Version]
- Bota, M.; Chifu, C.; Karapinar, E. Fixed point theorems for generalized (α–ψ)-Ciric-type contractive multivalued operators in b-metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 1165–1177. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E. α–ψ-Geraghty contraction type mappings and some related fixed point results. Filomat 2014, 28, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Dehici, A.; Redje, N. On some fixed points of α–ψ contractive mappings with rational expressions. J. Nonlinear Sci. Appl. 2017, 10, 1569–1581. [Google Scholar] [CrossRef] [Green Version]
- Shahi, P.; Kaur, J.; Bhatia, S.S. Coincidence and common fixed point results for generalized α–ψ contractive type mappings with applications. Bull. Belg. Math. Soc. 2015, 22, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N.; Kukić, K.; Gardašević-Filipović, M.; Aydi, H. On almost b-metric spaces and related fixed points results. Axioms 2019, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Fulga, A.; Taş, A. Fixed point results via simulation functions in the context of quasi-metric space. Filomat 2018, 32, 4711–4729. [Google Scholar] [CrossRef]
- Hu, T.K. On a fixed point theorem for metric spaces. Amer. Math. Mon. 1967, 74, 436–437. [Google Scholar] [CrossRef]
- Kirk, A.W. Caristi’s fixed point theorem and metric convexity. Colloq. Math. 1976, 36, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanyan, P.V. Completeness and fixed-points. Mon. Math. 1975, 80, 325–330. [Google Scholar] [CrossRef]
- Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 2008, 136, 1861–1869. [Google Scholar] [CrossRef]
- Romaguera, S. A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010, 2010, 493298. [Google Scholar] [CrossRef] [Green Version]
- Altun, I.; Romaguera, S. Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point. Appl. Anal. Discr. Math. 2012, 6, 247–256. [Google Scholar] [CrossRef]
- Romaguera, S.; Tirado, P. A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem. Fixed Point Theory Appl. 2015, 2015, 183. [Google Scholar] [CrossRef] [Green Version]
- Alegre, C.; Dağ, H.; Romaguera, S.; Tirado, P. Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theorems. Hacet. J. Math. Stat. 2017, 46, 67–76. [Google Scholar] [CrossRef]
- Cobzaş, S. Functional Analysis in Asymmetric Normed Spaces; Frontiers in Mathematics; Birkhäuser/Springer Basel AG: Basel, Switzerland, 2013. [Google Scholar]
- Romaguera, S.; Tirado, P. The Meir-Keeler fixed point theorem for quasi-metric spaces and some consequences. Symmetry 2019, 11, 741. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Takahashi, W. Fixed point theorems and characterizations of metric completeness. Topolog. Meth. Nonlinear Anal. 1996, 8, 371–382. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romaguera, S.; Tirado, P. A Characterization of Quasi-Metric Completeness in Terms of α–ψ-Contractive Mappings Having Fixed Points. Mathematics 2020, 8, 16. https://doi.org/10.3390/math8010016
Romaguera S, Tirado P. A Characterization of Quasi-Metric Completeness in Terms of α–ψ-Contractive Mappings Having Fixed Points. Mathematics. 2020; 8(1):16. https://doi.org/10.3390/math8010016
Chicago/Turabian StyleRomaguera, Salvador, and Pedro Tirado. 2020. "A Characterization of Quasi-Metric Completeness in Terms of α–ψ-Contractive Mappings Having Fixed Points" Mathematics 8, no. 1: 16. https://doi.org/10.3390/math8010016
APA StyleRomaguera, S., & Tirado, P. (2020). A Characterization of Quasi-Metric Completeness in Terms of α–ψ-Contractive Mappings Having Fixed Points. Mathematics, 8(1), 16. https://doi.org/10.3390/math8010016