A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation
Abstract
1. Introduction
2. Problem Formulation and Preliminaries
3. Main Results
4. Application
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Agarwal, R.V. Nonlinear impulsive multi-order Caputo-Type generalized fractional differential equations with infinite delay. Mathematics 2019, 7, 1108. [Google Scholar] [CrossRef]
- Khan, U.; Ellahi, R.; Khan, R.; Mohyud-Din, S.T. Extracting new solitary wave solutions of Benny–Luke equation and Phi-4 equation of fractional order by using (G’/G)-expansion method. Opt. Quant. Electron. 2017, 49, 362. [Google Scholar] [CrossRef]
- Lundstrom, B.N.; Higgs, M.H.; Spain, W.J.; Fairhall, A.L. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 2008, 11, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L.; Ovadia, M. Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 2008, 14, 1431–1442. [Google Scholar] [CrossRef]
- Picozzi, S.; West, B.J. Fractional Langevin model of memory in financial markets. Phys. Rev. E 2002, 66, 46–118. [Google Scholar] [CrossRef] [PubMed]
- Rahmatullah; Ellahi, R.; Mohyud-Din, S.T.; Khan, U. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method. Results Phys. 2018, 8, 114–120. [Google Scholar] [CrossRef]
- Sohail, A.; Maqbool, K.; Ellahi, R. Stability analysis for fractional-order partial differential equations by means of space spectral time Adams-Bashforth Moulton method. Numer. Methods Partial. Differ. Equ. 2017, 34, 19–29. [Google Scholar] [CrossRef]
- Tripathi, D.; Pandey, S.K.; Das, S. Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel. Appl. Math. Comput. 2010, 215, 3645–3654. [Google Scholar] [CrossRef]
- Duarte-Mermoud, M.A.; Aguila-Camacho, N.; Gallegos, J.A.; Castro-Linares, R. Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 650–659. [Google Scholar] [CrossRef]
- Chen, L.P.; He, Y.G.; Chai, Y.; Wu, R.C. New results on stability stabilization of a class of nonlinear fractional-order systems. Nonlinear Dynam. 2014, 75, 633–641. [Google Scholar] [CrossRef]
- Wu, G.C.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K.T. Mittag–Leffler stability analysis of fractional discrete–time neural networks via fixed point technique. Nonlinear Anal. Model. Control 2019, 24, 919–936. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Huang, L.L. Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Appl. Math. Lett. 2018, 82, 71–78. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.; Huang, T. Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl. Math. Comput. 2017, 293, 416–422. [Google Scholar] [CrossRef]
- Brzdek, J.; Eghbali, N. On approximate solutions of some delayed fractional differential equations. Appl. Math. Lett. 2016, 54, 31–35. [Google Scholar] [CrossRef]
- Chen, L.P.; Liu, C.; Wu, R.C.; He, Y.G.; Chai, Y. Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Comput. Appl. 2016, 27, 549–556. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.R. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Zhou, X.F.; Jiang, W. Lyapunov stability analysis of fractional nonlinear systems. Appl. Math. Lett. 2016, 51, 13–19. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, X.F.; Li, X.; Jiang, W. Stability of fractional nonlinear singular systems its applications in synchronization of complex dynamical networks. Nonlinear Dynam. 2016, 84, 2377–2385. [Google Scholar] [CrossRef]
- Ozarslan, M.A.; Ustaoglu, C. Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators. Mathematics 2019, 7, 483. [Google Scholar] [CrossRef]
- Rashid, S.; Abdeljawad, T.; Jarad, F.; Noor, M.A. Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications. Mathematics 2019, 7, 807. [Google Scholar] [CrossRef]
- Fridman, E. Stability of linear descriptor systems with delays: A Lyapunov-based approach. Aust. J. Math. Anal. Appl. 2002, 273, 24–44. [Google Scholar] [CrossRef]
- Kwon, O.M.; Park, J.H.; Lee, S.M. Augmented Lyapunov functional approach to stability of uncertain neutral systems with time-varying delays. Appl. Comput. Math. 2009, 207, 202–212. [Google Scholar] [CrossRef]
- Liao, X.; Liu, Y.; Guo, S.; Mai, H. Asymptotic stability of delayed neural networks: A descriptor system approach. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3120–3133. [Google Scholar] [CrossRef]
- Park, J.H. Delay-dependent criterion for guaranteed cost control of neutral delay systems. J. Opt. Theory Appl. 2005, 124, 491–502. [Google Scholar] [CrossRef]
- Deng, S.; Liao, X.; Guo, S. Asymptotic stability analysis of certain neutral differential equations: A descriptor system approach. Math. Comput. Simul. 2009, 71, 4297–4308. [Google Scholar] [CrossRef]
- Kwon, O.M.; Park, J.H. On improved delay-dependent stability criterion of certain neutral differential equations. Appl. Math. Comput. 2008, 199, 385–391. [Google Scholar] [CrossRef]
- Nam, P.T.; Phat, V.N. An improved stability criterion for a class of neutral differential equations. Appl. Math. Lett. 2009, 22, 31–35. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R. Asymptotic stability of certain neutral differential equations. Math. Comput. Model. 2000, 31, 9–15. [Google Scholar] [CrossRef]
- Park, J.H.; Kwon, O.M. Stability analysis of certain nonlinear differential equation. Chaos Solitons Fractals 2008, 27, 450–453. [Google Scholar] [CrossRef]
- Chen, H. Some improved criteria on exponential stability of neutral differential equation. Adv. Differ. Equ. 2012, 2012, 170. [Google Scholar] [CrossRef][Green Version]
- Chen, H.; Meng, X. An improved exponential stability criterion for a class of neutral delayed differential equations. Appl. Math. Lett. 2011, 24, 1763–1767. [Google Scholar] [CrossRef]
- Keadnarmol, P.; Rojsiraphisal, T. Globally exponential stability of a certain neutral differential equation with time-varying delays. Adv. Differ. Equ. 2014, 2014, 32. [Google Scholar] [CrossRef]
- Li, X. Global exponential stability for a class of neural networks. Appl. Math. Lett. 2009, 22, 1235–1239. [Google Scholar] [CrossRef]
- Li, H.; Zhou, S.; Li, H. Asymptotic stability analysis of fractional-order neutral systems with time delay. Adv. Differ. Equ. 2015, 2015, 325–335. [Google Scholar] [CrossRef][Green Version]
- Liu, S.; Wu, X.; Zhang, Y.J.; Yang, R. Asymptotical stability of Riemann–Liouville fractional neutral systems. Appl. Math. Lett. 2017, 69, 168–173. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Rojsiraphisal, T.; Niamsup, P. Exponential stability of certain neutral differential equations. Appl. Math. Lett. 2010, 17, 3875–3880. [Google Scholar] [CrossRef]
6.4920 | 4.5076 | 3.3117 | |
4.1166 | 2.8588 | 2.1003 | |
1.3227 | 0.9185 | 0.6748 |
Deng et al. (2009) [25] | 0.889 |
Nam and Phat (2009) [27] | 1.405 |
Chen and Meng (2011) [31] | 1.346 |
Chen (2012) [30] | 1.405 |
Keadnarmol and Rojsiraphisal (2014) [32] | 1.405 |
Corollary 3 | 1.4051 |
Nam and Phat (2009) [27] | 2.32 |
Rojsiraphisal and Niamsup (2010) [38] | 2.32 |
Chen and Meng (2011) [31] | |
Chen (2012) [30] | |
Corollary 3 |
0.2449 | 0.4898 | 0.7348 | 0.9797 | 1.2247 | |
0.2291 | 0.4582 | 0.6873 | 0.9165 | 1.1456 | |
0.2000 | 0.3999 | 0.5999 | 0.7999 | 0.9999 | |
0.1500 | 0.2999 | 0.4499 | 0.5999 | 0.7499 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chartbupapan, W.; Bagdasar, O.; Mukdasai, K. A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation. Mathematics 2020, 8, 82. https://doi.org/10.3390/math8010082
Chartbupapan W, Bagdasar O, Mukdasai K. A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation. Mathematics. 2020; 8(1):82. https://doi.org/10.3390/math8010082
Chicago/Turabian StyleChartbupapan, Watcharin, Ovidiu Bagdasar, and Kanit Mukdasai. 2020. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation" Mathematics 8, no. 1: 82. https://doi.org/10.3390/math8010082
APA StyleChartbupapan, W., Bagdasar, O., & Mukdasai, K. (2020). A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation. Mathematics, 8(1), 82. https://doi.org/10.3390/math8010082