On Conformal and Concircular Diffeomorphisms of Eisenhart’s Generalized Riemannian Spaces
Abstract
:1. Introduction
2. Conformal Mappings of Generalized Riemannian Spaces
Concircular Mappings of Generalized Riemannian Spaces
3. Eisenhart Symmetric Spaces
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Einstein, A. The Meaning of Relativity, 5th ed.; Princeton Univ. Press: Priceton, NJ, USA, 1955; p. 169. [Google Scholar]
- Eisenhart, L.P. Generalized Riemannian spaces. Proc. Natl. Acad. Sci. USA 1951, 37, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Prvanović, M. Four curvature tensors of non-symmetric affine connexion. In Proceedings of the Conference 150 Years of Lobachevski Geometry, Kazan, Russia, 30 June–2 July 1976; VINITI: Moscow, Russia, 1977; pp. 199–205. (In Russian). [Google Scholar]
- Minčić, S.M. Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connexion. Coll. Math. Soc. János Bolyai 1979, 31, 445–460. [Google Scholar]
- Fu, F.; Yang, X.; Zhao, P. Geometrical and physical characteristics of a class of conformal mappings. J. Geom. Phys. 2012, 62, 1467–1479. [Google Scholar] [CrossRef]
- Mikeš, J. Geodesic mappings of Einstein spaces. Math. Notes 1980, 28, 922–923. [Google Scholar] [CrossRef]
- Mikeš, J. Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 1996, 3, 311–333. [Google Scholar] [CrossRef]
- Mikeš, J.; Berezovski, V.E.; Stepanova, E.; Chudá, H. Geodesic mappings and their generalizations. J. Math. Sci. 2010, 5, 607–623. [Google Scholar] [CrossRef]
- Mikeš, J.; Gavril’chenko, M.L.; Gladysheva, E.I. Conformal mappings onto Einstein spaces. Moscow Univ. Math. Bull. 1994, 49, 10–14. [Google Scholar]
- Mikeš, J.; Vanžurová, A.; Hinterleitner, I. Geodesic Mappings and Some Generalizations; Palacky Univ. Press: Olomouc, Czech Republic, 2009. [Google Scholar]
- Mikeš, J.; Stepanova, E.; Vanžurová, A.; Sándor, B.; Berezovski, V.; Chepurna, E.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.; Haddad, M.; et al. Differential Geometry of Special Mappings; Palacky Univ. Press: Olomouc, Czech Republic, 2015. [Google Scholar]
- Petrović, M.Z. Special almost geodesic mappings of the second type between generalized Riemannian spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 707–727. [Google Scholar] [CrossRef]
- Petrović, M.Z. Canonical almost geodesic mappings of type , between generalized m-parabolic Kähler manifolds. Miskolc Math. Notes 2018, 19, 469–482. [Google Scholar] [CrossRef]
- Petrović, M.Z.; Stanković, M.S. Special almost geodesic mappings of the first type of non-symmetric affine connection spaces. Bull. Malays. Math. Sci. Soc. 2017, 40, 1353–1362. [Google Scholar] [CrossRef]
- Petrović, M.Z.; Stanković, M.S. On almost geodesic mappings of the second type between manifolds with non-symmetric linear connection. Filomat 2018, 32, 3831–3841. [Google Scholar] [CrossRef]
- Stepanov, S.E. Some conformal and projective scalar invariants of Riemannian manifolds. Math. Notes 2006, 80, 848–852. [Google Scholar] [CrossRef]
- Steglich, C. Invariants of conformal and projective structures. Results Math. 1995, 27, 188–190. [Google Scholar] [CrossRef]
- Hall, G.S. Some remarks on the converse of Weyl’s conformal theorem. J. Geom. Phys. 2010, 60, 1–7. [Google Scholar] [CrossRef]
- Ivanov, S. On dual-projectively flat affine connections. J. Geom. 1995, 53, 89–99. [Google Scholar] [CrossRef]
- Sinyukov, N.S. Geodesic Mappings of Riemannian Spaces; Nauka: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Janssen, T.; Prokopec, T. Problems and hopes in nonsymmetric gravity. J. Phys. A Math. Theor. 2007, 40, 7067–7074. [Google Scholar] [CrossRef]
- Stankovic, M.S.; Velimirovic, L.S.; Mincic, S.M.; Zlatanovic, M.L. Equitorsion conform mappings of generalized Riemannian spaces. Mat. Vesn. 2009, 61, 119–129. [Google Scholar]
- Zlatanović, L.M.; Hinterleitner, I.; Najdanović, M. On equitorsion concircular tensors of generalized Riemannian spaces. Filomat 2014, 28, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Minčić, S.M. On Ricci type identities in manifolds with non-symmetric affine connection. Publ. Inst. Math. 2013, 94, 205–217. [Google Scholar] [CrossRef]
- Minčić, S.M. Some characteristics of curvature tensors of non-symmetric affine connexion. Proc. 12th Yug. Geom. Sem. 1997, 6, 169–183. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, M.Z.; Stanković, M.S.; Peška, P. On Conformal and Concircular Diffeomorphisms of Eisenhart’s Generalized Riemannian Spaces. Mathematics 2019, 7, 626. https://doi.org/10.3390/math7070626
Petrović MZ, Stanković MS, Peška P. On Conformal and Concircular Diffeomorphisms of Eisenhart’s Generalized Riemannian Spaces. Mathematics. 2019; 7(7):626. https://doi.org/10.3390/math7070626
Chicago/Turabian StylePetrović, Miloš Z., Mića S. Stanković, and Patrik Peška. 2019. "On Conformal and Concircular Diffeomorphisms of Eisenhart’s Generalized Riemannian Spaces" Mathematics 7, no. 7: 626. https://doi.org/10.3390/math7070626
APA StylePetrović, M. Z., Stanković, M. S., & Peška, P. (2019). On Conformal and Concircular Diffeomorphisms of Eisenhart’s Generalized Riemannian Spaces. Mathematics, 7(7), 626. https://doi.org/10.3390/math7070626