Some Qualitative Behavior of Solutions of General Class of Difference Equations
Abstract
:1. Introduction
2. Main Results
2.1. Local Stability and Semi-Cycle Analysis
- 1.
- If , then is locally asymptotically stable and sink.
- 2.
- If , then is unstable and repeller.
- 3.
- If , then is locally asymptotically stable and sink.
- 4.
- If , then is an unstable saddle point.
- 5.
- If or , then is a nonhyperbolic point.
2.2. Existence of Periodic Solutions
3. Discussion and Examples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmad, S. On the nonautonomous Volterra-Lotka competition equations. Proc. Am. Math. Soc. 1993, 117, 199–204. [Google Scholar] [CrossRef]
- Allman, E.S.; Rhodes, J.A. Mathematical Models in Biology: An Introduction; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Din, Q.; Elsayed, E.M. Stability analysis of a discrete ecological model. Comput. Ecol. Softw. 2014, 4, 89–103. [Google Scholar]
- Elettreby, M.F.; El-Metwally, H. On a system of difference equations of an economic model. Discret. Dyn. Nat. Soc. 2013, 2013, 405628. [Google Scholar] [CrossRef]
- Haghighi, A.M.; Mishev, D.P. Difference and Differential Equations with Applications in Queueing Theory; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kelley, W.G.; Peterson, A.C. Difference Equations: An Introduction with Applications, 2nd ed.; Harcour Academic: New York, NY, USA, 2001. [Google Scholar]
- Liu, X. A note on the existence of periodic solutions in discrete predator-prey models. Appl. Math. Model. 2010, 34, 2477–2483. [Google Scholar] [CrossRef]
- Zhou, Z.; Zou, X. Stable periodic solutions in a discrete periodic logistic equation. Appl. Math. Lett. 2003, 16, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Cull, P.; Flahive, M.; Robson, R. Difference Equations: From Rabbits to Chaos; Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 2005. [Google Scholar]
- Beverton, R.J.H.; Holt, S.J. On the Dynamics of Exploited Fish Populations; Fishery Investigations Series II; Blackburn Press: Caldwell, NJ, USA, 2004; Volume 19. [Google Scholar]
- Abdelrahman, M.A.E.; Chatzarakis, G.E.; Li, T.; Moaaz, O. On the difference equation xn+1 = axn−l + bxn−k + f(xn−l,xn−k). Adv. Differ. Equ. 2018, 2018, 431. [Google Scholar] [CrossRef]
- Abu-Saris, R.M.; Devault, R. Global Stability of Jn+1 = A + Jn/Jn−k. Appl. Math. Lett. 2003, 16, 173–178. [Google Scholar] [CrossRef]
- Berenhaut, K.S.; Stevic, S. The behaviour of the positive solutions of the difference equation xn+1 = A + (xn−l/xn−k)p. J. Differ. Equ. Appl. 2006, 12, 909–918. [Google Scholar] [CrossRef]
- Devault, R.; Schultz, S.W. On the dynamics of xn+1 = (axn + bxn−1)/(cxn + dxn−1). Commun. Appl. Nonlinear Anal. 2005, 12, 35–40. [Google Scholar]
- Kalabusic, S.; Kulenovic, M.R.S. On the recursive sequnence xn+1 = (αxn−1 + βxn−2)/(γxn−1 + δxn−2). J. Differ. Equ. Appl. 2003, 9, 701–720. [Google Scholar]
- Moaaz, O. Comment on New method to obtain periodic solutions of period two and three of a rational difference equation [Nonlinear Dyn 79:241250]. Nonlinear Dyn. 2017, 88, 1043–1049. [Google Scholar] [CrossRef]
- Stevic, S. On the Recursive Sequence Jn+1 = A + (Jn/Jn−1)p. Discret. Dyn. Nat. Soc. 2007, 2007, 34517. [Google Scholar]
- Border, K.C. Eulers Theorem for Homogeneous Functions. Available online: http://www.hss.caltech.edu/kcb/Ec121a/Notes/EulerHomogeneity.pdf (accessed on 23 July 2009).
- Papanicolaou, V.G. On the asymptotic stability of a class of linear difference equations. Math. Mag. 1996, 69, 34–43. [Google Scholar] [CrossRef]
- Kulenovic, M.R.S.; Ladas, G. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Amleh, A.M.; Grove, E.A.; Georgiou, D.A.; Ladas, G. On the recursive sequence xn+1 = α + xn−1/xn. J. Math. Anal. Appl. 1999, 233, 790–798. [Google Scholar] [CrossRef]
- Hamza, A.E. On the recursive sequence xn+1 = α + xn−1/xn. J. Math. Anal. Appl. 2006, 322, 668–674. [Google Scholar] [CrossRef]
- Elsayed, E.M. New Method to obtain Periodic Solutions of Period Two and Three of a Rational Difference Equation. Nonlinear Dyn. 2015, 79, 241–250. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; El-Metwally, H.; Elsayed, E.M. On the difference equation xn+1 = (axn−l + bxn−k)/(cxn−l + dxn−k). Acta Math. Vietnam. 2008, 33, 85–94. [Google Scholar]
- Elsayed, E.M. Dynamics and behavior of a higher order rational difference equation. J. Nonlinear Sci. Appl. 2015, 9, 1463–1474. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaaz, O.; Chalishajar, D.; Bazighifan, O. Some Qualitative Behavior of Solutions of General Class of Difference Equations. Mathematics 2019, 7, 585. https://doi.org/10.3390/math7070585
Moaaz O, Chalishajar D, Bazighifan O. Some Qualitative Behavior of Solutions of General Class of Difference Equations. Mathematics. 2019; 7(7):585. https://doi.org/10.3390/math7070585
Chicago/Turabian StyleMoaaz, Osama, Dimplekumar Chalishajar, and Omar Bazighifan. 2019. "Some Qualitative Behavior of Solutions of General Class of Difference Equations" Mathematics 7, no. 7: 585. https://doi.org/10.3390/math7070585
APA StyleMoaaz, O., Chalishajar, D., & Bazighifan, O. (2019). Some Qualitative Behavior of Solutions of General Class of Difference Equations. Mathematics, 7(7), 585. https://doi.org/10.3390/math7070585