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Abstract: In this work, we consider the general class of difference equations (covered many equations
that have been studied by other authors or that have never been studied before), as a means of
establishing general theorems, for the asymptotic behavior of its solutions. Namely, we state new
necessary and sufficient conditions for local asymptotic stability of these equations. In addition, we
study the periodic solution with period two and three. Our results essentially extend and improve
the earlier ones.
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1. Introduction

Difference equations are recognized as description of observed evolution of a phenomenon, where
the majority of measurements of a time-evolving variable are discrete. As a result, these equations
get their importance in arithmetical models. Moreover, difference equations are used in studying
of discrete approaches. Many results have been obtained in the theory of difference equations as
more natural discrete analogues of corresponding results of differential equations. However, this
could be true particularly in case of the stability theory of Lyapunov. Moreover, the applications
of the differential equation theory are growing rapidly in a wide variety of fields (i.e., numerical
analyses, finite mathematics, control theory, and computer science). This puts lots of potential on
studying the difference equations theory in addition to the related disciplines. Difference equations
have been widely used as mathematical models for describing real life situations in probability
theory, queuing problems, stochastic time series, combinatorial analysis, statistical problems, number
theory, geometry, electrical networks, quanta in radiation, economics, genetics in biology, psychology,
sociology, refer [1–8]. For varied reasons, rational difference equations have sparked the debate of many
researchers. First, they afford many examples of non-linear equations which are treatable, in many
cases. However, their dynamics offer some strong features with regard to the linear case. In fact, the
importance of studying difference equations comes from their appearance in many biological models
which have many applications. One of the interesting examples for both facts is Riccati difference
equations; the richness of the dynamics of Riccati equations is very well-known [9], and a specific
case of these equations provides the classical Beverton-Holt model on the dynamics of exploited fish
populations [10]. Clearly, higher-order rational difference equations and systems of rational equations
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have also been widely studied but yet leave many aspects to be investigated. For many results,
applications, and open problems on higher-order equations and difference systems, refer [8,11].

Our aim in this paper is to investigate the qualitative behavior of solutions of the general equation

Jn+1 = f (Jn, Jn−1) , n = 0, 1, . . . (1)

where the function f is continuous real function and homogenous with degree ωero and the initial
condition J−1 and J0 are real numbers.

There are many papers devoted to the qualitative behavior of solutions of special cases of
Equation (1) (see [12–17]). Most of these papers studied only the sufficient condition for stability
of equilibrium point. Our aim here is to give a complete picture regarding the stability of equilibrium
point of general Equation (1). In other words, we state a new necessary and sufficient condition
for locally asymptotically stability of Equation (1) which extends and complements the earlier ones.
Moreover, by using a new technique, we study the existence of periodic solutions of prime period two
and three. New periodicity conditions are extended to a number of existing conditions.

Let difference equation

Jn+1 = F (Jn, Jn−1, . . . , Jn−k) , n = 0, 1, . . . (2)

has positive equilibrium point J∗, the linearized equation of Equation (2) of J∗ is

Jn+1 + η0 Jn + η1 Jn−1 + · · ·+ ηk Jn−k = 0, (3)

where ηζ = −Fuζ
(J∗, J∗, . . . , J∗) for ζ = 0, 1, . . . , k. Then, the characteristic equation of Equation (3) is

γk+1 + η0γk + η1γk−1 + · · ·+ ηk = 0. (4)

Equation (3) will be called stable, asymptotically stable, or unstable provided that the zero
equilibrium point has that property. In addition, the asymptotic stability of the zero equilibrium is
equivalent to every solution having limit zero as n→ ∞ which in turn is true if and only if all roots of
the characteristic equation lie in the open unit disk |γ| < 1. A positive semicycle of a solution {Jn}∞

n=−1
of (1) consists of a “string” of terms {Jr, Jr+1, . . . , Js}, all greater than or equal to the equilibrium J∗,
with r ≥ −1 and s ≤ ∞ and such that

either r = −1 or r > −1 and Jr−1 < J∗

and
either m = ∞ or m < ∞ and Jm+1 < J∗.

A negative semicycle of a solution {Jn}∞
n=−1 of (1) consists of a “string” of terms {Jr, Jr+1, . . . , Js},

all less than the equilibrium J∗, with r ≥ −1 and s ≤ ∞ and such that

either r = −1 or r > −1 and Jr−1 ≥ J∗

and
either m = ∞ or m < ∞ and Jm+1 ≥ J∗.
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2. Main Results

2.1. Local Stability and Semi-Cycle Analysis

Next, we study the asymptotic stability for (1). The equilibrium point of Equation (1) is given by

J∗ = f (1, 1) .

The linearized equation associated with (1) about J∗ is

ωn+1 − fu (J∗, J∗)ωn − fv (J∗, J∗)ωn−1 = 0. (5)

From Euler’s homogeneous function Theorem, we have that u fu + v fv = 0, and hence fu (J∗, J∗) =
− fv (J∗, J∗). In addition, from [18], we get that fu and fv homogenous with degree −1 and hence
(5) yield

ωn+1 − µωn + µωn−1 = 0, (6)

where

µ =
fu (1, 1)
f (1, 1)

.

In the next theorems, we study the asymptotic stability for (1).

Theorem 1. For local stability of the equilibrium point J∗ of Equation (1), we have the following cases:

1. If µ ∈ (0, 1), then J∗ is locally asymptotically stable and sink.
2. If µ > 1, then J∗ is unstable and repeller.
3. If µ ∈ (−1/2, 0), then J∗ is locally asymptotically stable and sink.
4. If µ < −1/2, then J∗ is an unstable saddle point.
5. If µ = 1 or −1/2, then J∗ is a nonhyperbolic point.

Proof. The characteristic equation of (6) is

γ2 − µγ + µ = 0. (7)

Assume that µ > 0. From [19], we have that J∗ is locally asymptotically stable if and only if µ < 1
and J∗ is sink. Otherwise, if µ > 1, then J∗ is unstable,

|µ| > 1 and |µ| < |1 + µ| ,

and hence, from Theorem 1.1.1-(d) in [20], J∗ is a repeller.
On the other hand, assume that µ < 0. Let µ = −δ < 0, then the roots of the characteristic

Equation (7) are

γ± =
δ

2

(
−1±

√
1 +

4
δ

)
.

We define the following functions

g (s) =
s
2

(
−1 +

√
1 +

4
s

)
, (8)

h (s) =
s
2

(
−1−

√
1 +

4
s

)
. (9)
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Now, let δ > 1
2 . From definition of h (s), we have h′ (s) < 0 for s > 0. Since h (s) decreasing

and h (1/2) = −1, we get h (s) < −1 for s > 1/2 and hence |γ−| > 1. Thus, J∗ is unstable if δ > 1
2(

⇐⇒ µ < − 1
2

)
. In addition, we note that

µ2 − 4µ >
1
4
+ 4

(
1
2

)
=

9
4
> 0 and |µ| > |1 + µ| for all µ < −1

2
,

Hence, from Theorem 1.1.1-(e) in [20], J∗ is an unstable saddle point.
Next, let 0 < δ < 1/2. From (8), we get

g′ (s) =
1
2

(
−1 +

s + 2√
s2 + 4s

)
.

Since (s + 2)2 >
(
s2 + 4s

)
, we obtain s+2√

s2+4s
> 1 and hence g′ (s) > 0. Therefore, 0 < g (s) < 1/2

for s ∈ (0, 1/2) and then |γ+| < 1. In addition, from (9), we see that h (s) decreasing for s ∈ (0, 1/2)
and −1 < h (s) < 0, then |γ−| < 1. Thus, we obtain |γ±| < 1, and hence J∗ is locally asymptotically
stable and sink if 0 < δ < 1/2.

Finally, if µ = 1 or −1/2, then

|µ| = |1 + µ| , if µ = −1/2,

−µ = −1 and |µ| < 2 if µ = 1,

Thus, from Theorem 1.1.1-(e) in [20], J∗ is a nonhyperbolic point. Then, the proof is completed.

Remark 1. From Theorem 1, we see that the equilibrium point J∗ of Equation (1) is locally asymptotically
stable if

0 < µ < 1 or − 1
2
< µ < 0.

and unstable if

µ > 1 or µ < −1
2

.

Next, we give some results about the semi-cycles of Equation (1).

Theorem 2. Let f ∈ C ((0, ∞)× (0, ∞) , (0, ∞)) and J∗ be a positive equilibrium of Equation (1). For a
semi-cycle analysis of the solutions of Equation (1), we have only the following two cases:
(c1) Except possibly for the first semi-cycle, every solution of Equation (1) has semi-cycles of length one.
(c2) Except possibly for the first semicycle, every oscillatory solution of Equation (1) has semi-cycles of length at
least two.

Proof. Since the function f : (0, ∞)2 → (0, ∞) homogenous with degree ωero, we get from Euler’s
homogeneous function Theorem

fu

fv
= − v

u
< 0

Hence, we have two cases
(i) fu < 0 and fv > 0 (10)

or
(ii) fu > 0 and fv < 0. (11)
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For case (i), if {Jn}∞
n=−1 is a solution of Equation (1) with at least two semi-cycles, then there

exists a positive integer m such that either Jm−1 < J∗ ≤ Jm or Jm−1 ≥ J∗ > Jm. Let Jm−1 < J∗ ≤ Jm.
From (10), we have

Jm+1 = f (Jm, Jm−1)

< f (J∗, Jm−1)

< f (J∗, J∗)

= f (1, 1) = J∗

and

Jm+2 = f (Jm+1, Jm)

> f (J∗, J∗) = J∗.

Thus, it is followed by the induction that

Jm+2s−1 < J∗ < Jm+2s for all s = 0, 1, 2, . . . .

In the case where Jm−1 ≥ J∗ > Jm, the proof is similar and is omitted. Then {Jn}∞
n=−1 has

semicycles of length one.
For case (ii), if {Jn}∞

n=−1 is an oscillatory solution with Jm−1 < J∗ ≤ Jm, then we get

Jm+1 = f (Jm, Jm−1)

> f (J∗, J∗) = J∗.

Thus, the term Jm+1 also belongs to the positive semicycle and hence {Jn}∞
n=−1 has semi-cycles of

length at least two. Similarly, we can prove the case where Jm−1 ≥ J∗ > Jm which is omitted here for
convenience. Then, the proof is completed.

Theorem 3. Let f ∈ C ((0, ∞)× (0, ∞) , (0, ∞)) , J∗ be a positive equilibrium of Equation (1), fu > 0 and
fv < 0. If

f (u, v) < u for all v ∈ (J∗, u) , (12)

then, except possibly for the first semicycle which may have length one, every oscillatory solution of Equation (1)
has semi-cycles of length two or three. Whereas if

f (u, v) > u for all v ∈ (J∗, u) , (13)

then, every solution of Equation (1) with J0 > J−1 > J∗ is increasing.

Proof. Assume that {Jn}∞
n=−1 is an oscillatory solution of Equation (1). From Theorem 2, we get that

{Jn}∞
n=−1 has semi-cycles of length at least two. Then, there exists a positive integer m such that either

Jm−1 < J∗ < Jm+1 < Jm (14)

or
Jm−1 < J∗ < Jm < Jm+1 (15)

Let (12) hold. Now, if we have (6) holds, then we get

Jm+2 = f (Jm+1, Jm)

< f (Jm, Jm) = f (1, 1) = J∗,
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which shows that {Jn}∞
n=−1 has semi-cycles of length at two. On the other hand, if (15) holds, then

we obtain

Jm+2 = f (Jm+1, Jm)

> f (Jm, Jm) = f (1, 1) = J∗

and from (12), we find
Jm+2 = f (Jm+1, Jm) < Jm+1.

Then,

Jm+3 = f (Jm+2, Jm+1)

< f (Jm+1, Jm+1) = f (1, 1) = J∗,

which shows that {Jn}∞
n=−1 has semi-cycles of length at three.

Next, let (13) holds. Thus, we find

J1 = f (J0, J−1) > J0

and
J2 = f (J1, J0) > J1

and so on, we get that {Jn}∞
n=−1 is increasing. Thus, the proof is completed.

2.2. Existence of Periodic Solutions

Next, we obtain necessary and sufficient conditions on f so that every positive solution of
Equation (1) is periodic with period two or three.

Theorem 4. Equation (1) has a prime period two solution {Jn}∞
n=−1 where

Jn =

{
ρ if n odd
σ if n even

,

if and only if
f (1, τ) = τ f (τ, 1) , (16)

where τ = ρ/σ.

Proof. Assume that Equation (1) has a prime period two solution

. . . , ρ, σ, ρ, σ, . . . .

From Equation (1), we have

ρ = f (σ, ρ) = f
(

1,
ρ

σ

)
and σ = f (ρ, σ) = f

( ρ

σ
, 1
)

.

Thus, we obtain
0 = ρ− τσ = f (1, τ)− τ f (τ, 1) ,

where τ = ρ/σ.
Next, if we have (16) holds, then we choose, for all τ ∈ R \ {1}

J−1 = f (1, τ) and J0 = f (τ, 1) .
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Then, we see that
J1 = f (J0, J−1) = f ( f (τ, 1) , f (1, τ)) .

From (16), we find
J1 = f ( f (τ, 1) , τ f (τ, 1)) = f (1, τ) .

Similarly, we can prove that J2 = f (1, τ). Hence, it is followed by the induction that

J2n−1 = f (1, τ) and J2n = f (τ, 1) for all n ≥ 0.

Therefore, Equation (1) has a prime period two solution, and the proof is complete.

Theorem 5. Equation (1) has a prime period three solution {Jn}∞
n=−1 where

Jn =


α for n = 3r− 1
β for n = 3r
γ for n = 3r + 1

, r = 0, 1, . . .

if and only if
f (1, s) = t f (s, t) ;
f (t, 1) = s f (s, t) ,

(17)

where t = β/α and s = γ/α.

Proof. Assume that Equation (1) has a prime period three solution

. . . , α, β, γ, α, β, γ, . . . .

From Equation (1), we get

γ = f (β, α) , α = f (γ, β) and β = f (α, γ) ,

and hence,

γ = f
(

β

α
, 1
)
= f (t, 1) ;

α = f
(

1,
β

γ

)
= f

(
1,

t
s

)
= f (s, t) ;

β = f
(

1,
γ

α

)
= f (1, s) .

Now, we have

t =
β

α
=

f (1, s)
f (s, t)

and s =
γ

α
=

f (t, 1)
f (s, t)

,

Hence, we find

f (1, s) = t f (s, t) ;

f (t, 1) = s f (s, t) .

Next, if we have (17) holds, then we choose, for all t, s ∈ R \ {1} ,

J−1 = f (s, t) and J0 = f (1, s) .
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Thus, we see that

J1 = f (J0, J−1) = f ( f (1, s) , f (s, t))

= f (t f (s, t) , f (s, t)) = f (t, 1) .

Similarly, we can prove that J2 = f (s, t) and J3 = f (1, s). Hence, it is followed by the
induction that

J3n−1 = f (s, t) , J3n = f (1, s) and J3n+1 = f (t, 1) for all n ≥ 0.

Therefore, Equation (1) has a prime period three solution, and the proof is complete.

3. Discussion and Examples

Example 1. Consider the difference equation

Jn+1 = a +
Jn−1

Jn
, (18)

where a is a real number. Note that
f (u, v) = a +

v
u

and
µ =

−1
a + 1

From Theorem 1, if µ > 0 (when a < −1), then Equation (18) is locally asymptotically stable if and only if
a < −2. In addition, let µ < 0 (when a > −1), we get that Equation (18) is locally asymptotically stable if
a > 1 and unstable if −1 < a < 1. Thus, we can assert that Equation (18) is locally asymptotically stable if
a ∈ (−∞,−2) ∪ (1, ∞) and unstable if a ∈ (−2, 1).

Remark 2. Equation (18) was studied by Amleh et al. in [21] and Hamza in [22] when a ≥ 0 and a < 0,
respectively. Our results in Example 1 are consistent with the results in [21,22].

Example 2. Consider the difference equation

Jn+1 = α + β
Jn

Jn−1
+ γ

Jn−1

Jn
, (19)

where α, β and γ are positive real numbers. Note that

f (u, v) = α + β
u
v
+ γ

v
u

and
µ =

β− γ

α + β + γ
.

By using Theorems 1, we see that Equation (19) is locally asymptotically stable if β > γ or β < γ < α + 3β

and unstable if γ > α + 3β.

Remark 3. Equation (19) was studied by Elsayed in [23]. He showed that Equation (19) is locally asymptotically
stable if

2 |β− γ| < α + β + γ. (20)

From our results in Example 2, if we choose α = 0.1, β = 2 and γ = 0.1, then Equation (19) is locally
asymptotically stable see (Figure 1). However, the values of α, β and γ do not fulfill the condition (20). Thus,
our results here extend and improve results of Elsayed [23].
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Figure 1. The stable solution corresponding to differences Equation (19).

Remark 4. By using Theorem 1, we can state new necessary and sufficient conditions for locally asymptotically
stability of several equations that previously have been studied, including [13,23–25], etc.

Corollary 1. Equation

Jn+1 = a + b
(

Jn

Jn−1

)α

, (21)

where a, b and α are real numbers, has no prime period two solution if a, b and α are positive. In addition,
Equation (21) has a prime period two solution if and only if

(i) a/b < − (2α + 1) , α > 0 and J−1 J0 > 0;

(ii) a/b > 1, α odd and J−1 J0 < 0;

(iii) a/b < −1, α even and J−1 J0 < 0.

Proof. From Theorem 4, we have that Equation (21) has a prime period two solution . . . , ρ, σ, ρ, σ, . . . ,
if and only if

a
b
=

(
τ2α+1 − 1
τα (1− τ)

)
. (22)

We note that τ2α+1−1
τα(1−τ)

< 0 for all τ ∈ R+. Then Equation (21) has no prime period two if a and b
are positive. Now, we define

H (τ) =
τ2α+1 − 1
τα (1− τ)

.

Hence, we see that

H (τ) < − (2α + 1) , for τ ∈ R+\ {1} and α > 0. (23)

Thus, we get
a
b
< − (2α + 1) .

On the other hand, if τ ∈ R−, then we find H (τ) < −1 if α odd and H (τ) > 1 if α even. Hence,
the proof is complete.

Example 3. If we take

a = −7/2, b = 1, α = 1, J−1 = −3 and J0 = −3/2 (see Figure 2a);

or a = 43, b = 8, α = 3, J−1 = −21 and J0 = 42 (see Figure 2b);

or a = 61, b = −9, α = 2, J−1 = 60 and J0 = −20 (see Figure 2c),

then Equation (1) has prime period two solutions.
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(a) (b) (c)

Figure 2. Prime period two solutions of Equation (21).

Remark 5. Stevic [17] [in Theorem 4.1] studied the periodicity of the difference Equation (21) when b = 1 and
a, α ∈ (0, ∞), and proved that there are no positive prime two-periodic solutions of (21). Thus, our results in
Theorem 1 extend and complement the results of Stevic [17].

Corollary 2. Equation (21) has a periodic solution of prime period three if and only if

t
(

s2α − tα−1

sα+1 − t2α

)
= sα

(
1− t
1− s

)
and

a = b
(

sα+1 − t2α

tα (1− s)

)
,

where t = J0/J−1 and s = J1/J−1.

The proof is immediate (from the proof of Theorem 5) and hence is omitted.

Example 4. If we take a = −0.6722, b = 1, α = 1, J−1 = 0.9518 and J0 = −1.1722, then Equation (21) has a
prime period three solution (see Figure 3).

1 
 

 

2 

 

 

Figure 3. Prime period three solutions of Equation (21).

Remark 6. By using our results, we can study the qualitative behavior of many difference equations, for example

xn+1 = a + be−xn−1/xn ,

xn+1 =

√
axn−1

bxn + cxn−1
.

In addition, by the change of variables xn = b
Jn+1
− a, the equation

xn+1 =
a + xn

a + xn−1
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reduces to the equation

Jn+1 =
bJn

aJn + Jn−1

which is a special case from Equation (1).

4. Conclusions

In this paper, we study a general class of difference equations (covering many equations studied
by other authors or that have never been studied before), as a means of establishing general theorems,
for the asymptotic behavior of its solutions. Here, we state new necessary and sufficient conditions for
local asymptotic stability of Equation (1). In addition, by using new technique in Theorems 4 and 5,
we establish new necessary and sufficient conditions and these conditions are very useful in studying
the existence of periodic solutions of period two and three. Our results here extend and complement
many recent ones in the literature. Suitable illustrative examples have also been provided.
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