An Analytical Technique to Solve the System of Nonlinear Fractional Partial Differential Equations
Abstract
1. Introduction
2. Definitions and Preliminary Concepts
3. Idea of Fractional Laplace–Adomian Decomposition Method
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Helal, M.A.; Mehanna, M.S. A comparative study between two different methods for solving the general Kortweg–de Vries equation (GKdV). Chaos Solitons Fractals 2007, 33, 725–739. [Google Scholar] [CrossRef]
- Jibran, M.; Nawaz, R.; Khan, A.; Afzal, S. Iterative Solutions of Hirota Satsuma Coupled KDV and Modified Coupled KDV Systems. Math. Probl. Eng. 2018, 2018, 9042039. [Google Scholar] [CrossRef]
- Biazar, J.; Eslami, M. A new homotopy perturbation method for solving systems of partial differential equations. Comput. Math. Appl. 2011, 62, 225–234. [Google Scholar] [CrossRef]
- Kumar, A.; Pankaj, R.D. Laplace-Modified Decomposition Method for the Generalized Hirota-Satsuma Coupled KdV Equation. Can. J. Basic Appl. Sci. 2015, 3, 126–133. [Google Scholar]
- Wang, M.; Zhou, Y.; Li, Z. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 1996, 216, 67–75. [Google Scholar] [CrossRef]
- Gokdogan, A.; Yildirim, A.; Merdan, M. Solving coupled-KdV equations by differential transformation method. World Appl. Sci. J. 2012, 19, 1823–1828. [Google Scholar]
- Jafari, H.; Firoozjaee, M.A. Homotopy analysis method for solving KdV equations. Surv. Math. Its Appl. 2010, 5, 89–98. [Google Scholar]
- Mohamed, M.A.; Torky, M.S. Numerical solution of nonlinear system of partial differential equations by the Laplace decomposition method and the Pade approximation. Am. J. Comput. Math. 2013, 3, 175. [Google Scholar] [CrossRef]
- Seadawy, A.R.; El-Rashidy, K. Water wave solutions of the coupled system Zakharov-Kuznetsov and generalized coupled KdV equations. Sci. World J. 2014, 2014, 724759. [Google Scholar] [CrossRef]
- González-Gaxiola, O. The Laplace–Adomian Decomposition Method Applied to the Kundu-Eckhaus Equation. arXiv 2017, arXiv:1704.07730. [Google Scholar]
- Alhendi, F.A.; Alderremy, A.A. Numerical Solutions of Three-Dimensional Coupled Burgers’ Equations by Using Some Numerical Methods. J. Appl. Math. Phys. 2016, 4, 2011. [Google Scholar] [CrossRef]
- Jafari, H.; Khalique, C.M.; Nazari, M. Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion–wave equations. Appl. Math. Lett. 2011, 24, 1799–1805. [Google Scholar] [CrossRef]
- Khan, M.; Hussain, M.; Jafari, H.; Khan, Y. Application of Laplace decomposition method to solve nonlinear coupled partial differential equations. World Appl. Sci. J. 2010, 9, 13–19. [Google Scholar]
- Khan, M.; Hussain, M. Application of Laplace decomposition method on semi-infinite domain. Numer. Algorithms 2011, 56, 211–218. [Google Scholar] [CrossRef]
- Mohamed, M.Z. Comparison between the Laplace Decomposition Method and Adomian Decomposition in Time-Space Fractional Nonlinear Fractional Differential Equations. Appl. Math. 2018, 9, 448. [Google Scholar] [CrossRef]
- Al-Zurigat, M. Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2012, 39, 200–210. [Google Scholar]
- Haq, F.; Shah, K.; ur Rahman, G.; Shahzad, M. Numerical solution of fractional order smoking model via laplace Adomian decomposition method. Alex. Eng. J. 2018, 57, 1061–1069. [Google Scholar] [CrossRef]
- Haq, F.; Shah, K.; Khan, A.; Shahzad, M.; Rahman, G. Numerical solution of fractional order epidemic model of a vector born disease by Laplace Adomian decomposition method. Punjab Univ. J. Math. 2017, 49, 13–22. [Google Scholar]
- Mahmood, S.; Shah, R.; Arif, M. Laplace Adomian Decomposition Method for Multi Dimensional Time Fractional Model of Navier-Stokes Equation. Symmetry 2019, 11, 149. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Arif, M.; Kumam, P. Application of Laplace–Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations. Entropy 2019, 21, 335. [Google Scholar] [CrossRef]
- Thabet, H.; Kendre, S.; Chalishajar, D. New analytical technique for solving a system of nonlinear fractional partial differential equations. Mathematics 2017, 5, 47. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience: New York, NY, USA, 1993. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Sci. Publishing: River Edge, NJ, USA, 2000. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: New York, NY, USA, 1998; Volume 198. [Google Scholar]
- Naghipour, A.; Manafian, J. Application of the Laplace Adomian decomposition and implicit methods for solving Burgers’ equation. TWMS J. Pure Appl. Math. 2015, 6, 68–77. [Google Scholar]
- Kaya, D. An application of the decomposition method for the KdVB equation. Appl. Math. Comput. 2004, 152, 279–288. [Google Scholar] [CrossRef]
LADM | Ex() | AE | |||||||
---|---|---|---|---|---|---|---|---|---|
−10 | 0.1 | 0.017635 | 0.002788 | 0.017654 | 0.002791 | 0.017661 | 0.002791 | 7.449 | 4.928 |
0.3 | 0.017613 | 0.002785 | 0.017637 | 0.002789 | 0.017659 | 0.002787 | 2.238 | 1.478 | |
0.5 | 0.017597 | 0.002783 | 0.017620 | 0.002786 | 0.017657 | 0.002784 | 3.727 | 2.464 | |
0 | 0.1 | 0.196755 | 0.031107 | 0.196657 | 0.031093 | 0.196617 | 0.031096 | 3.975 | 2.629 |
0.3 | 0.196875 | 0.031123 | 0.196748 | 0.031106 | 0.196628 | 0.031114 | 1.192 | 7.889 | |
0.5 | 0.196961 | 0.031135 | 0.196839 | 0.031118 | 0.196640 | 0.031131 | 1.987 | 1.314 | |
10 | 0.1 | 0.002470 | 0.000390 | 0.002467 | 0.000390 | 0.002466 | 0.000390 | 1.073 | 7.100 |
0.3 | 0.002473 | 0.000390 | 0.002470 | 0.000390 | 0.002466 | 0.000390 | 3.221 | 2.131 | |
0.5 | 0.002475 | 0.000391 | 0.002472 | 0.000390 | 0.002467 | 0.000391 | 5.368 | 3.552 |
LADM | Ex() | AE | |||||||
---|---|---|---|---|---|---|---|---|---|
−10 | 0.1 | 0.010173 | −0.98953 | 0.010718 | −0.98926 | 0.010718 | −0.98939 | 1.210 | 1.312 |
0.3 | 0.009571 | −0.98982 | 0.010200 | −0.98951 | 0.010201 | −0.98990 | 6.351 | 3.848 | |
0.5 | 0.009181 | −0.99001 | 0.009707 | −0.98975 | 0.009708 | −0.99038 | 5.301 | 6.274 | |
0 | 0.1 | 0.603381 | −0.76294 | 0.616554 | −0.76429 | 0.616566 | −0.76358 | 1.230 | 7.041 |
0.3 | 0.586890 | −0.76158 | 0.604564 | −0.76297 | 0.604679 | −0.76095 | 1.141 | 2.015 | |
0.5 | 0.574744 | −0.76081 | 0.592339 | −0.76177 | 0.592666 | −0.75858 | 3.267 | 3.188 | |
10 | 0.1 | 0.995627 | −0.99577 | 0.995829 | −0.99589 | 0.995827 | −0.99584 | 2.502 | 5.088 |
0.3 | 0.995404 | −0.99562 | 0.995636 | −0.99579 | 0.995614 | −0.99563 | 2.271 | 1.566 | |
0.5 | 0.995261 | −0.99550 | 0.995454 | −0.99567 | 0.995390 | −0.99541 | 6.364 | 2.680 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, R.; Khan, H.; Kumam, P.; Arif, M. An Analytical Technique to Solve the System of Nonlinear Fractional Partial Differential Equations. Mathematics 2019, 7, 505. https://doi.org/10.3390/math7060505
Shah R, Khan H, Kumam P, Arif M. An Analytical Technique to Solve the System of Nonlinear Fractional Partial Differential Equations. Mathematics. 2019; 7(6):505. https://doi.org/10.3390/math7060505
Chicago/Turabian StyleShah, Rasool, Hassan Khan, Poom Kumam, and Muhammad Arif. 2019. "An Analytical Technique to Solve the System of Nonlinear Fractional Partial Differential Equations" Mathematics 7, no. 6: 505. https://doi.org/10.3390/math7060505
APA StyleShah, R., Khan, H., Kumam, P., & Arif, M. (2019). An Analytical Technique to Solve the System of Nonlinear Fractional Partial Differential Equations. Mathematics, 7(6), 505. https://doi.org/10.3390/math7060505