Next Article in Journal
Constrained FC 4D MITPs for Damageable Substitutable and Complementary Items in Rough Environments
Previous Article in Journal
On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generalized Hyers-Ulam Stability of the Pexider Functional Equation

1
Department of Mathematics Education, Gongju National University of Education, Gongju 32553, Korea
2
Department of Mathematics, Kangnam University, Yongin, Gyeonggi 16979, Korea
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(3), 280; https://doi.org/10.3390/math7030280
Submission received: 8 February 2019 / Revised: 9 March 2019 / Accepted: 15 March 2019 / Published: 19 March 2019
(This article belongs to the Section Mathematics and Computer Science)

Abstract

:
In this paper, we investigate the generalized Hyers-Ulam stability of the Pexider functional equation f ( x + y , z + w ) = g ( x , z ) + h ( y , w ) .

1. Introduction

Throughout this paper, let V and W be real vector spaces and Y be a real Banach space. In 1940, Ulam [1] raised the question about the stability of group homomorphisms. In 1941, for a given mapping f : V Y , Hyers [2] solved the stability problem for the Cauchy additive functional equation
f ( x + y ) f ( x ) f ( y ) = 0 ,
for all x , y V . In 1978, Rassias [3] generalized Hyers’ result and Găvruta [4] made Rassias’ result more general. The concept of stability shown by Găvruta is called the ’generalized Hyers-Ulam stability’.
For given mappings f , g , h : V Y , the stability of the Pexider functional equation
f ( x + y ) g ( x ) h ( y ) = 0 x , y V
was investigated by Lee and Jun [5] (see also [6,7,8,9]).
Now, for given mappings f , g , h : V × V Y , we consider the Pexider functional equation
f ( x + y , z + w ) g ( x , z ) h ( y , w ) = 0 ,
for all x , y , z , w in the vector space V. One of typical examples of solutions of the functional Equation (1) are the mappings f , g , h : R × R R given by f ( x , z ) = a x + b z + c + d , g ( x , z ) = a x + b z + c and h ( x , z ) = a x + b z + d with real constants a , b , c , d .
In this paper, we will investigate the generalized Hyers-Ulam stability of the Pexider functional Equation (1).

2. Main Results

For given mappings f , g , h : V × V Y , we use the following abbreviations:
D f g h ( x , y , z , w ) : = f ( x + y , z + w ) g ( x , z ) h ( y , w ) ,
for all x , y , z , w V . We need the following lemma to prove the main theorems.
Lemma 1.
If the mappings f , g , h : V × V W satisfy ( 1 ) for all x , y , z , w V , then there exists an additive mapping k : V × V W such that k ( x , z ) = f ( x , z ) f ( 0 , 0 ) = g ( x , z ) g ( 0 , 0 ) = h ( x , z ) h ( 0 , 0 ) for all x , z V .
Proof. 
From the equalities f ( 0 , 0 ) = g ( 0 , 0 ) + h ( 0 , 0 ) , f ( x , z ) = g ( x , z ) + h ( 0 , 0 ) , and f ( x , z ) = g ( 0 , 0 ) + h ( x , z ) for all x , z V , we obtain the equalities f ( x , z ) f ( 0 , 0 ) = g ( x , z ) g ( 0 , 0 ) = h ( x , z ) h ( 0 , 0 ) for all x , z V . Put k ( x , z ) = f ( x , z ) f ( 0 , 0 ) = g ( x , z ) g ( 0 , 0 ) = h ( x , z ) h ( 0 , 0 ) for all x , z V , then
k ( x + y , z + w ) = f ( x + y , z + w ) f ( 0 , 0 ) = g ( x , z ) g ( 0 , 0 ) + h ( y , w ) h ( 0 , 0 ) = k ( x , z ) + k ( y , w )
for all x , y , z , w V . □
Using the previous lemma, we obtain the following generalized Hyers-Ulam stability results for Equation (1).
Theorem 1.
Suppose that f , g , h : V × V Y are mappings for which there exists a function φ : V 2 [ 0 , ) such that
i = 0 φ ( 2 i x , 2 i y , 2 i z , 2 i w ) 2 i <
and
f ( x + y , z + w ) g ( x , z ) h ( y , w ) φ ( x , y , z , w )
for all x , y , z , w V . Then, there exists a unique additive mapping F : V × V Y such that
f x , z f ( 0 , 0 ) F x , z n = 0 μ ( 2 n x , 2 n z ) 2 n + 1 ,
g x , z g ( 0 , 0 ) F x , z n = 0 ν ( 2 n x , 2 n z ) 2 n + 1 ,
h x , z h ( 0 , 0 ) F x , z n = 0 ξ ( 2 n x , 2 n z ) 2 n + 1 ,
for all x , z V , where the functions μ , ν , ξ : V 2 R are defined by
μ ( x , z ) = φ ( x , x , z , z ) + φ ( x , 0 , z , 0 ) + φ ( 0 , x , 0 , z ) + φ ( 0 , 0 , 0 , 0 ) , ν ( x , z ) = φ ( 2 x , x , 2 z , z ) + φ ( x , 0 , z , 0 ) + φ ( x , x , z , z ) + φ ( 0 , 0 , 0 , 0 ) , ξ ( x , z ) = φ ( x , 2 x , z , 2 z ) + φ ( 0 , x , 0 , z ) + φ ( x , x , z , z ) + φ ( 0 , 0 , 0 , 0 ) .
Proof. 
Let f ( x , z ) : = f ( x , z ) f ( 0 , 0 ) , g ( x , z ) : = g ( x , z ) g ( 0 , 0 ) , and h ( x , z ) : = h ( x , z ) h ( 0 , 0 ) . Since the equalities
f ( 2 x , 2 z ) 2 f ( x , z ) = D f g h ( x , x , z , z ) D f g h ( x , 0 , z , 0 ) D f g h ( 0 , x , 0 , z ) D f g h ( 0 , 0 , 0 , 0 ) ,
g ( 2 x , 2 z ) 2 g ( x , z ) = D f g h ( 2 x , x , 2 z , z ) D f g h ( x , 0 , z , 0 ) D f g h ( x , x , z , z ) + D f g h ( 0 , 0 , 0 , 0 ) ,
h ( 2 x , 2 z ) 2 h ( x , z ) = D f g h ( x , 2 x , z , 2 z ) D f g h ( 0 , x , 0 , z ) D f g h ( x , x , z , z ) + D f g h ( 0 , 0 , 0 , 0 ) ,
hold for all x , z V , the inequalities
f ( x , z ) f ( 2 x , 2 z ) 2 1 2 μ ( x , z ) , g ( x , z ) g ( 2 x , 2 z ) 2 1 2 ν ( x , z ) , h ( x , z ) h ( 2 x , 2 z ) 2 1 2 ξ ( x , z ) ,
for all x , z V , follow from Inequality (3). Using the above inequalities, and the equalities
f 2 n x , 2 n z 2 n f 2 n + m x , 2 n + m z 2 n + m = k = n n + m 1 f 2 k x , 2 k z 2 k f 2 k + 1 x , 2 k + 1 z 2 k + 1 , g 2 n x , 2 n z 2 n g 2 n + m x , 2 n + m z 2 n + m = k = n n + m 1 g 2 k x , 2 k z 2 k g 2 k + 1 x , 2 k + 1 z 2 k + 1 , h 2 n x , 2 n z 2 n h 2 n + m x , 2 n + m z 2 n + m = k = n n + m 1 h 2 k x , 2 k z 2 k h 2 k + 1 x , 2 k + 1 z 2 k + 1 ,
we get the following inequalities
f 2 n x , 2 n z 2 n f 2 n + m x , 2 n + m z 2 n + m k = n n + m 1 μ ( 2 k x , 2 k z ) 2 k + 1 ,
g 2 n x , 2 n z 2 n g 2 n + m x , 2 n + m z 2 n + m k = n n + m 1 ν ( 2 k x , 2 k z ) 2 k + 1 ,
h 2 n x , 2 n z 2 n h 2 n + m x , 2 n + m z 2 n + m k = n n + m 1 ξ ( 2 k x , 2 k z ) 2 k + 1 ,
for all x , z V and all n , m N { 0 } . So, the sequences { f 2 n x , 2 n z 2 n } n N , { g 2 n x , 2 n z 2 n } n N , and { h 2 n x , 2 n z 2 n } n N are Cauchy sequences for all x , z V \ { 0 } . As Y is a real Banach space, we can define the mappings F , G , H : V × V Y by
F ( x , z ) = lim n f 2 n x , 2 n z 2 n , G ( x , z ) = lim n g 2 n x , 2 n z 2 n , H ( x , z ) = lim n h 2 n x , 2 n z 2 n ,
for all x , z V . Since
lim n g 2 n x , 2 n z 2 n f 2 n x , 2 n z 2 n = lim n D f g h ( 2 n x , 0 , 2 n z , 0 ) + D f g h ( 0 , 0 , 0 , 0 ) 2 n lim n φ ( 2 n x , 0 , 2 n z , 0 ) + φ ( 0 , 0 , 0 , 0 ) 2 n = 0 , lim n h 2 n x , 2 n z 2 n f 2 n x , 2 n z 2 n = lim n D f g h ( 0 , 2 n x , 0 , 2 n z ) + D f g h ( 0 , 0 , 0 , 0 ) 2 n lim n φ ( 0 , 2 n x , 0 , 2 n z ) + φ ( 0 , 0 , 0 , 0 ) 2 n = 0 ,
for all x , z V , we have F ( x , z ) = G ( x , z ) = H ( x , z ) for all x , z V . By putting n = 0 and letting m in Inequalities (10)–(12), we obtain Inequalities (4)–(6) for all x , z V .
From Inequality (3), we get
D f g h ( 2 n x , 2 n y , 2 n z , 2 n w ) 2 n φ 2 n x , 2 n y , 2 n z , 2 n w 2 n ,
for all x , y , z , w V . Since the right-hand side of the above equality tends to zero as n , we obtain that F , G , and H satisfy the functional Equation (1). Thus, by Lemma 1, F is an additive mapping.
If F : V × V Y is another additive mapping satisfying (4)–(6), we obtain
F x , z F x , z F 2 k x , 2 k z 2 k f 2 k x , 2 k z 2 k + f 2 k x , 2 k z 2 k F 2 k x , 2 k z 2 k n = k μ ( 2 n x , 2 n z ) 2 n ,
for all x , z V and all k N . As n = k μ ( 2 n x , 2 n z ) 2 n 0 as k , we have F ( x , z ) = F ( x , z ) for all x , z V . Hence, the mapping is the unique additive mapping, as desired. □
Corollary 1.
Suppose that f : V × V Y is a mapping for which there exists a function φ : V 2 [ 0 , ) satisfying inequality (2) and
2 f x + y 2 , z + w 2 f ( x , z ) f ( y , w ) φ ( x , y , z , w ) ,
for all x , y , z , w V . Then, there exists a unique additive mapping F : V × V Y such that
f x , z f ( 0 , 0 ) F x , z min n = 0 μ ( 2 n x , 2 n z ) 2 n + 1 , n = 0 ν ( 2 n x , 2 n z ) 2 n + 1 , n = 0 ξ ( 2 n x , 2 n z ) 2 n + 1
for all x , z V .
Theorem 2.
Suppose that f : V × V Y is a mapping for which there exists a function φ : V 2 [ 0 , ) , such that
i = 0 2 i φ x 2 i , y 2 i , z 2 i , w 2 i <
and ( 3 ) for all x , y , z , w V . Then, there exists a unique additive mapping F : V × V Y such that
f x , z f ( 0 , 0 ) F x , z n = 0 2 n μ x 2 n + 1 , z 2 n + 1 ,
g x , z g ( 0 , 0 ) F x , z n = 0 2 n ν x 2 n + 1 , z 2 n + 1 ,
h x , z h ( 0 , 0 ) F x , z n = 0 2 n ξ x 2 n + 1 , z 2 n + 1 ,
for all x , z V , where the functions μ , ν , ξ : V 2 R are defined as in Theorem 1.
Proof. 
The inequalities
f ( x , z ) 2 f x 2 , z 2 μ x 2 , x 2 , g ( x , z ) 2 g x 2 , z 2 ν x 2 , z 2 , h ( x , z ) 2 h x 2 , z 2 ξ x 2 , z 2 ,
for all x , z V follow from equalities (7)–(9) for all x , z V and inequality (3). Using the above inequalities, we easily get the following inequalities
2 n f x 2 n , z 2 n 2 n + m f x 2 n + m , z 2 n + m k = n n + m 1 2 k μ x 2 k + 1 , z 2 k + 1 ,
2 n g x 2 n , z 2 n 2 n + m g x 2 n + m , z 2 n + m k = n n + m 1 2 k ν x 2 k + 1 , z 2 k + 1 ,
2 n h x 2 n , z 2 n 2 n + m h x 2 n + m , z 2 n + m k = n n + m 1 2 k ξ x 2 k + 1 , z 2 k + 1 ,
for all x , z V and all n , m N { 0 } . Thus, the sequences { 2 n f x 2 n , z 2 n } n N , { 2 n g x 2 n , z 2 n } n N , and { 2 n h x 2 n , z 2 n } n N are Cauchy sequences for all x , z V . Since Y is a real Banach space, we can define the mappings F , G , H : V × V Y by
F ( x ) = lim n 2 n f x 2 n , z 2 n , G ( x ) = lim n 2 n g x 2 n , z 2 n , H ( x ) = lim n 2 n h x 2 n , z 2 n
for all x , z V . Since
lim n 2 n g x 2 n , z 2 n 2 n f x 2 n , z 2 n = lim n 2 n D f g h x 2 n , 0 , z 2 n , 0 + D f g h ( 0 , 0 , 0 , 0 ) lim n 2 n φ x 2 n , 0 , z 2 n , 0 + 2 n φ ( 0 , 0 , 0 , 0 ) = 0 , lim n 2 n h x 2 n , z 2 n 2 n f x 2 n , z 2 n = lim n 2 n D f g h 0 , x 2 n , 0 , z 2 n + D f g h ( 0 , 0 , 0 , 0 ) lim n 2 n φ 0 , x 2 n , 0 , z 2 n + 2 n φ ( 0 , 0 , 0 , 0 ) = 0 ,
for all x , z V , we have F ( x , z ) = G ( x , z ) = H ( x , z ) for all x , z V . By putting n = 0 and letting m in Inequalities (18)–(20), we obtain Inequalities (15)–(17) for all x , z V .
From Inequality (3), we get
2 n D f g h x 2 n , z 2 n , z 2 n , w 2 n 2 n φ x 2 n , z 2 n , z 2 n , w 2 n
for all x , y , z , w V . Since the right-hand side of the above equality tends to zero as n , we obtain that F , G , and H satisfy the functional Equation (1). Hence, by Lemma 1, F is an additive mapping.
If F : V × V Y is another additive mapping satisfying (15)–(17), we obtain G ( 0 , 0 ) = 0 = F ( 0 , 0 ) and
F x , z F x , z 2 k F x 2 k , z 2 k 2 k f x 2 k , z 2 k + 2 k f x 2 k , z 2 k 2 k F x 2 k , z 2 k n = k 2 n + 1 μ x 2 n + 1 , z 2 n + 1
for all x , z V and all k N . Since n = k 2 n + 1 μ x 2 n + 1 , z 2 n + 1 0 as k , we have F ( x , z ) = F ( x , z ) for all x , z V . Hence, the mapping F is the unique additive mapping, as desired. □
Corollary 2.
Suppose that f : V × V Y is a mapping for which there exists a function φ : V 2 [ 0 , ) satisfying inequality (14) and f satisfies inequality (13) for all x , y , z , w V . Then, there exists a unique additive mapping F : V × V Y , such that
f x , z f ( 0 , 0 ) F x , z min n = 0 2 n μ x 2 n + 1 , z 2 n + 1 , n = 0 2 n ν x 2 n + 1 , z 2 n + 1 , n = 0 2 n ξ x 2 n + 1 , z 2 n + 1 ,
for all x , z V .
Aoki ([10]) and Gajda ([11]) proved the generalized Hyers-Ulam stability for an additive mapping in the cases where 0 p < 1 and 1 < p , respectively. It was also proved by Gajda ([11]) and Rassias and Semrl ([12]) that the generalized Hyers-Ulam stability for an additive mapping does not holds for the case p 1 .
The above results for the cases p > 0 and p 1 can be applied to the next results, due to Theorems 1 and 2.
Corollary 3.
Let X be a normed space and p , θ be positive real numbers with p 1 . Suppose that f , g , h : X 2 Y are mappings, such that
f ( x + y , z + w ) g ( x , z ) h ( y , w ) θ ( x p + y p + z p + w p )
for all x , y , z , w X . Then, there exists a unique additive mapping F : X × X Y , such that
f x , z f ( 0 , 0 ) F x , z 4 | 2 2 p | θ ( x p + z p ) , g x , z g ( 0 , 0 ) F x , z 4 + 2 p | 2 2 p | θ ( x p + z p ) , h x , z h ( 0 , 0 ) F x , z 4 + 2 p | 2 2 p | θ ( x p + z p ) ,
for all x , z X .
Corollary 4.
Let X be a normed space and p , θ be positive real numbers with p 1 . If f : X 2 Y is a mapping satisfying Inequality (13) for all x , y , z , w X . Then, there exists a unique additive mapping F : X × X Y , such that
f x , z f ( 0 , 0 ) F x , z 4 | 2 2 p | θ ( x p + z p ) ,
for all x , z X .
Lemma 2.
If the odd mappings f , g , h : V × V W satisfy the equality (1) for all x , y , z , w V \ { 0 } . Then, the mapping f satisfies the equality D f f f ( x , y , z , w ) = 0 , for all x , y , z , w V .
Proof. 
Choose any u V \ { 0 } . Notice that the equality
f ( 2 x , 2 z ) = 2 f ( x , z )
for all x , z V follows from the equality
f ( 2 x , 2 z ) 2 f ( x , z ) = D f g h ( 3 x 2 , x 2 , 3 z 2 , z 2 ) + D f g h ( x 2 , x 2 , z 2 , z 2 ) D f g h ( 3 x 2 , x 2 , 3 z 2 , z 2 ) D f g h ( x 2 , x 2 , z 2 , z 2 ) ,
f ( 0 , 2 z ) 2 f ( 0 , z ) = D f g h ( u 2 , u 2 , 3 z 2 , z 2 ) + D f g h ( u 2 , u 2 , z 2 , z 2 ) D f g h ( u 2 , u 2 , z 2 , z 2 ) D f g h ( u 2 , u 2 , 3 z 2 , z 2 ) ,
f ( 2 x , 0 ) 2 f ( x , 0 ) = D f g h ( 3 x 2 , x 2 , u 2 , u 2 ) + D f g h ( x 2 , x 2 , u 2 , u 2 ) D f g h ( 3 x 2 , x 2 , u 2 , u 2 ) D f g h ( x 2 , x 2 , u 2 , u 2 ) ,
for all x , z , u V \ { 0 } . Using the equalities f ( 2 x , 2 z ) = 2 f ( x , z ) ,
2 f ( x + y 2 , z + w 2 ) f ( x , z ) f ( y , w ) = D f g h ( x 2 , y 2 , z 2 , w 2 ) + D f g h ( y 2 , x 2 , w 2 , z 2 ) D f g h ( x 2 , x 2 , z 2 , z 2 ) D f g h ( y 2 , y 2 , w 2 , w 2 ) , 2 f ( y 2 , z + w 2 ) f ( 0 , z ) f ( y , w ) = D f g h ( 3 y 4 , y 4 , w 2 , z 2 ) + D f g h ( y 4 , y 4 , z 2 , w 2 ) D f g h ( y 4 , y 4 , z 2 , z 2 ) D f g h ( 3 y 4 , y 4 , w 2 , w 2 ) , 2 f ( 0 , z + w 2 ) f ( 0 , z ) f ( 0 , w ) = D f g h ( x 2 , x 2 , z 2 , w 2 ) + D f g h ( x 2 , x 2 , w 2 , z 2 ) D f g h ( x 2 , x 2 , z 2 , z 2 ) D f g h ( x 2 , x 2 , w 2 , w 2 ) , 2 f ( y 2 , z 2 ) f ( 0 , z ) f ( y , 0 ) = D f g h ( 3 y 4 , y 4 , z 4 , z 4 ) + D f g h ( y 4 , y 4 , 3 z 4 , z 4 ) D f g h ( 3 y 4 , y 4 , z 4 , z 4 ) D f g h ( y 4 , y 4 , 3 z 4 , z 4 ) ,
for all x , y , z , w V \ { 0 } , we have the equalities
D f f f ( x , y , z , w ) = f ( x + y , z + w ) f ( x , z ) f ( y , w ) = 0 , D f f f ( 0 , y , z , w ) = f ( y , z + w ) f ( 0 , z ) f ( y , w ) = 0 , D f f f ( 0 , 0 , z , w ) = f ( 0 , z + w ) f ( 0 , z ) f ( 0 , w ) = 0 , D f f f ( 0 , y , z , 0 ) = f ( y , z ) f ( 0 , z ) f ( y , 0 ) = 0 ,
for all x , y , z , w V \ { 0 } . By the same method, we obtain the equalities
D f f f ( x , 0 , z , w ) = f ( x , z + w ) f ( x , z ) f ( 0 , w ) = 0 , D f f f ( x , y , 0 , w ) = f ( x + y , w ) f ( x , 0 ) f ( y , w ) = 0 , D f f f ( x , y , z , 0 ) = f ( x + y , z ) f ( x , z ) f ( y , 0 ) = 0 , D f f f ( x , 0 , 0 , w ) = f ( x , w ) f ( x , 0 ) f ( 0 , w ) = 0 , D f f f ( x , y , 0 , 0 ) = f ( x + y , 0 ) f ( x , 0 ) f ( y , 0 ) = 0 ,
for all x , y , z , w V \ { 0 } . As f ( 0 , 0 ) = 0 , the equalities D f f f ( x , 0 , z , 0 ) = 0 , D f f f ( 0 , y , 0 , w ) = 0 , D f f f ( 0 , 0 , 0 , 0 ) = 0 , D f f f ( x , 0 , 0 , 0 ) = 0 , D f f f ( 0 , y , 0 , 0 ) = 0 , D f f f ( 0 , 0 , z , 0 ) = 0 , D f f f ( 0 , 0 , 0 , w ) = 0 , D f f f ( 0 , 0 , 0 , 0 ) = 0 hold for all x , y , z , w V \ { 0 } . Hence, we conclude that D f f f ( x , y , z , w ) = 0 for all x , y , z , w V . □
Theorem 3.
Suppose that f , g , h : V × V Y are odd mappings, for which there exists a function φ : ( V \ { 0 } ) 4 [ 0 , ) such that
i = 0 φ ( 2 i x , 2 i y , 2 i z , 2 i w ) 2 i <
and
f ( x + y , z + w ) g ( x , z ) h ( y , w ) φ ( x , y , z , w ) ,
for all x , y , z , w V \ { 0 } . Then, there exists a unique mapping F : V × V Y , such that D F F F ( x , y , z , w ) = 0 for all x , y , z , w V and
f x , z F x , z n = 0 μ ( 2 n x , 2 n z ) 2 n + 1 ,
f x , 0 F x , 0 n = 0 ν ( 2 n x , 2 n u ) 2 n + 1 ,
f 0 , z F 0 , z n = 0 ξ ( 2 n u , 2 n z ) 2 n + 1 ,
for all x , z , u V \ { 0 } , where the functions μ , ν , ξ : V 2 R are defined by
μ ( x , z ) = φ ( 3 x 2 , x 2 , 3 z 2 , z 2 ) + φ ( x 2 , x 2 , z 2 , z 2 ) + φ ( 3 x 2 , x 2 , 3 z 2 , z 2 ) + φ ( x 2 , x 2 , z 2 , z 2 ) , ν ( x , u ) = φ ( 3 x 2 , x 2 , u 2 , u 2 ) + φ ( x 2 , x 2 , u 2 , u 2 ) + φ ( 3 x 2 , x 2 , u 2 , u 2 ) + φ ( x 2 , x 2 , u 2 , u 2 ) , ξ ( u , z ) = φ ( u 2 , u 2 , 3 z 2 , z 2 ) + φ ( u 2 , u 2 , z 2 , z 2 ) + φ ( u 2 , u 2 , z 2 , z 2 ) + φ ( u 2 , u 2 , 3 z 2 , z 2 ) ,
for all x , z , u V \ { 0 } .
Proof. 
Since f , g , h : V × V Y are odd mappings, the equalities f ( x , y ) = f ( x , y ) , g ( x , y ) = g ( x , y ) , h ( x , y ) = h ( x , y ) , and f ( 0 , 0 ) = g ( 0 , 0 ) = h ( 0 , 0 ) = 0 hold for all x , z V . Choose any u \ { 0 } . Since the equalities (21)–(23) hold for all x , z V \ { 0 } , the inequalities
f ( x , z ) f ( 2 x , 2 z ) 2 1 2 μ ( x , z ) , f ( x , 0 ) f ( 2 x , 0 ) 2 1 2 μ ( x , u ) , f ( 0 , z ) f ( 0 , 2 z ) 2 1 2 ξ ( u , z ) ,
for all x , z , u V \ { 0 } follow from the inequality (25). Using the above inequalities, we get the following inequalities
f 2 n x , 2 n z 2 n f 2 n + m x , 2 n + m z 2 n + m k = n n + m 1 μ ( 2 k x , 2 k z ) 2 k + 1 ,
f 2 n x , 0 2 n f 2 n + m x , 0 2 n + m k = n n + m 1 ν ( 2 k x , 2 k u ) 2 k + 1 ,
f 0 , 2 n z 2 n f 0 , 2 n + m z 2 n + m k = n n + m 1 ξ ( 2 k u , 2 k z ) 2 k + 1 ,
for all x , z , u V \ { 0 } and all nonnegative integers n , m . So, the sequence { f 2 n x , 2 n z 2 n } n N is a Cauchy sequence for all x , z V . As Y is a real Banach space, we can define a mapping F : V × V Y by
F ( x , z ) = lim n f 2 n x , 2 n z 2 n .
By putting n = 0 and letting m in the inequalities (29)–(31), we obtain the inequalities (26)–(28) for all x , z V .
Since the equalities
lim n 2 g ( 2 n x , 2 n z ) f ( 2 n + 1 x , 2 n + 1 z ) 2 n + 1 = lim n ( D f g h ( 2 n x , 2 n x , 2 n z , 2 n z ) 2 n + 1 D f g h ( 2 n x , 2 n x , 2 n z , 2 n z ) 2 n + 1 ) = 0 lim n 2 h ( 2 n x , 2 n z ) f ( 2 n + 1 x , 2 n + 1 z ) 2 n + 1 = lim n ( D f g h ( 2 n x , 2 n x , 2 n z , 2 n z ) 2 n + 1 D f g h ( 2 n x , 2 n x , 2 n z , 2 n z ) 2 n + 1 ) = 0 ,
hold for all x , z V \ { 0 } , we know that the limits of g 2 n x , 2 n z 2 n and h 2 n x , 2 n z 2 n are given by
lim n g 2 n x , 2 n z 2 n = F ( x , z ) , lim n h 2 n x , 2 n z 2 n = F ( x , z ) ,
for all x , z V \ { 0 } . From inequality (25), we get
D F F F ( x , y , z , w ) = lim n D f g h ( 2 n x , 2 n y , 2 n z , 2 n w ) 2 n lim n φ 2 n x , 2 n y , 2 n z , 2 n w 2 n ,
for all x , y , z , w V \ { 0 } . Since the right-hand side in the above equality equals zero, we obtain that the equality D F F F ( x , y , z , w ) = 0 holds for all x , y , z , w V \ { 0 } . By Lemma 2, F satisfies the equality D F F F ( x , y , z , w ) = 0 for all x , y , z , w V . If F : V × V Y is another mapping satisfying inequalities (26)–(28) and the equality D F F F ( x , y , z , w ) = 0 for all x , y , z , w V , then we obtain the inequalities
F x , z F x , z F 2 k x , 2 k z 2 k f 2 k x , 2 k z 2 k + f 2 k x , 2 k z 2 k F 2 k x , 2 k z 2 k n = k μ ( 2 n x , 2 n z ) 2 n , F x , 0 F x , 0 n = k ν ( 2 n x , 2 n u ) 2 n , F 0 , z F 0 , z n = k ξ ( 2 n u , 2 n z ) 2 n ,
for all x , z , u V \ { 0 } and all k N . As n = k μ ( 2 n x , 2 n z ) 2 n , n = k ν ( 2 n x , 2 n u ) 2 n , n = k ξ ( 2 n u , 2 n z ) 2 n 0 as k , we have F ( x , z ) = F ( x , z ) for all x , z V . Hence, the mapping F is the unique additive mapping, as desired. □
Lee (Theorem 5 in [13] and Corollary 1 in [14]) proved the generalized Hyers-Ulam stability for an additive mapping in the case n = 1 and p < 0 .
The next corollary, for the case p < 0 , follows from Theorem 3.
Corollary 5.
Let X be a normed space and p be a negative real number. Suppose that f , g , h : X 2 Y are odd mappings, such that
f ( x + y , z + w ) g ( x , z ) h ( y , w ) θ ( x p + y p + z p + w p )
for all x , y , z , w X \ { 0 } . Then f , g , h satisfy the equality D f f f ( x , y , z , w ) = 0 for all x , y , z , w X and the inequalities
g ( x , z ) f ( x , z ) 2 θ ( x p + z p ) , h ( x , z ) f ( x , z ) 2 θ ( x p + z p ) ,
for all x , z X \ { 0 } .
Proof. 
By Theorem 3, there exists a mapping F : X × X Y , such that D F F F ( x , y , z , w ) = 0 for all x , y , z , w X and
f x , z F x , z ( 2 · 3 p + 6 ) θ ( x p + z p ) 2 p ( 2 2 p ) ,
for all x , z , u X \ { 0 } . Therefore, we obtain the inequalities
g ( x , z ) F ( x , z ) 2 + ( 3 p + 3 ) 2 2 p θ ( x p + z p ) h ( x , z ) F ( x , z ) 2 + ( 3 p + 3 ) 2 2 p θ ( x p + z p ) ,
for all x , z X \ { 0 } , from the inequalities
g ( x , z ) F ( x , z ) g ( x , z ) f ( 2 x , 2 z ) 2 + f ( 2 x , 2 z ) 2 F ( 2 x , 2 z ) 2 D f g h ( x , x , z , z ) 2 + D f g h ( x , x , z , z ) 2 + ( 3 p + 3 ) θ ( x p + z p ) 2 2 p , h ( x , z ) F ( x , z ) h ( x , z ) f ( 2 x , 2 z ) 2 + f ( 2 x , 2 z ) 2 F ( 2 x , 2 z ) 2 D f g h ( x , x , z , z ) 2 + D f g h ( x , x , z , z ) 2 + ( 3 p + 3 ) θ ( x p + z p ) 2 2 p ,
for all x , z X \ { 0 } . Hence, we have the inequalities
f x , z F x , z = D f g h ( ( k + 1 ) x , k x , ( k + 1 ) z , k z ) D F F F ( ( k + 1 ) x , k x , ( k + 1 ) z , k z ) + g ( ( k + 1 ) x , ( k + 1 ) z ) F ( ( k + 1 ) x , ( k + 1 ) z ) + h ( k x , k z ) F ( k x , k z ) ( ( k + 1 ) p + k p ) 1 + 2 + ( 3 p + 3 ) 2 2 p θ ( x p + z p ) , f x , 0 F x , 0 = D f g h ( ( k + 1 ) x , k x , k z , k z ) D F F F ( ( k + 1 ) x , k x , k z , k z ) + g ( ( k + 1 ) x , k z ) F ( ( k + 1 ) x , k z ) + h ( k x , k z ) F ( k x , k z ) 1 + 2 + ( 3 p + 3 ) 2 2 p θ ( ( ( k + 1 ) p + k p ) x p + 2 k p z p ) , f 0 , z F 0 , z = D f g h ( k x , k x , ( k + 1 ) z , k z ) D F F F ( k x , k x , ( k + 1 ) z , k z ) + g ( k x , ( k + 1 ) z ) F ( k x , ( k + 1 ) z ) + h ( k x , k z ) F ( k x , k z ) 1 + 2 + ( 3 p + 3 ) 2 2 p θ ( 2 k p x p + ( k + 1 ) p + k p ) z p ) ,
for all x , z X \ { 0 } and k N . Since the right-hand side of the above equalities tends to zero as k when p < 0 , we know that f ( x , z ) = F ( x , z ) for all x , z X . So, f satisfies the equality D f f f ( x , y , z , w ) = 0 for all x , y , z , w X , which implies the equality f ( x , z ) = f ( 2 x , 2 z ) 2 for all x , z X , and the inequalities
g ( x , z ) f ( x , z ) = g ( x , z ) f ( 2 x , 2 z ) 2 D f g h ( x , x , z , z ) 2 + D f g h ( x , x , z , z ) 2 2 θ ( x p + z p ) , h ( x , z ) f ( x , z ) = h ( x , z ) f ( 2 x , 2 z ) 2 D f g h ( x , x , z , z ) 2 + D f g h ( x , x , z , z ) 2 2 θ ( x p + z p ) ,
for all x , z X \ { 0 } . □

Author Contributions

Writing—original draft, Y.-H.L. and G.-H.K.; Writing—review and editing, Y.-H.L. and G.-H.K.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ulam, S.M. Problems in Modern Mathematics; Wiley: New York, NY, USA, 1964. [Google Scholar]
  2. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
  3. Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
  4. Găvruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
  5. Lee, Y.-H.; Jun, K.-W. A generalization of the Hyers-Ulam-Rassias stability of the Pexider equation. J. Math. Anal. Appl. 2000, 246, 627–638. [Google Scholar] [CrossRef]
  6. Kominek, Z. On Hyers-Ulam stability of the Pexider equation. Demonstr. Math. 2004, 37, 373–376. [Google Scholar] [CrossRef]
  7. Moszner, Z. On the stability of functional equations. Aequ. Math. 2009, 7, 33–88. [Google Scholar] [CrossRef]
  8. Moszner, Z. On the normal stability of functional equations. Ann. Math. Sil De Gruyter Open 2016, 30, 111–128. [Google Scholar] [CrossRef]
  9. Nikodem, K. The stability of the Pexider equation. Ann. Math. Sil 1991, 5, 91–93. [Google Scholar]
  10. Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
  11. Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
  12. Rassias, T.M.; Šemrl, P. On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc. Am. Math. Soc. 1992, 114, 989–993. [Google Scholar] [CrossRef]
  13. Lee, Y.-H. On the stability of the monomial functional equation. Bull. Korean Math. Soc. 2008, 45, 397–403. [Google Scholar] [CrossRef]
  14. Lee, Y.-H. Stability of a monomial functional equation on a restricted domain. Mathematics 2017, 5, 53. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Lee, Y.-H.; Kim, G.-H. Generalized Hyers-Ulam Stability of the Pexider Functional Equation. Mathematics 2019, 7, 280. https://doi.org/10.3390/math7030280

AMA Style

Lee Y-H, Kim G-H. Generalized Hyers-Ulam Stability of the Pexider Functional Equation. Mathematics. 2019; 7(3):280. https://doi.org/10.3390/math7030280

Chicago/Turabian Style

Lee, Yang-Hi, and Gwang-Hui Kim. 2019. "Generalized Hyers-Ulam Stability of the Pexider Functional Equation" Mathematics 7, no. 3: 280. https://doi.org/10.3390/math7030280

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop