On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Existence Results
- (i)
- there exist constants and
- (ii)
- Then the boundary value problem (1), (2) has a unique solution on .
- (i)
- there exist a positive real constants such that
- (ii)
- whereThen there exists at least one solution for the problem (1), (2) on .
4. Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kusnezov, D.; Bulgac, A.; Dang, G.D. Quantum Levy processes and fractional kinetics. Phys. Rev. Lett. 1999, 82, 1136–1139. [Google Scholar] [CrossRef]
- Jiao, Z.; Chen, Y.Q.; Podlubny, I. Distributed-Order Dynamic Systems; Springer: New York, NY, USA, 2012. [Google Scholar]
- Hartley, T.T.; Lorenzo, C.F.; Killory, Q.H. Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1995, 42, 485–490. [Google Scholar] [CrossRef]
- Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D. Chaos in a fractional order Duffing system. In Proceedings of the 1997 European Conference on Circuit the Ory and Design (ECCTD97), Budapest, Hungary, 30 August–3 September 1997; Technical University of Budapest: Budapest, Hungary, 1997; pp. 1259–1262. [Google Scholar]
- Grigorenko, I.; Grigorenko, E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 2003, 91, 034101. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Klafter, J. The random walks guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Sokolov, I.M.; Klafter, J.; Blumen, A. Fractional kinetics. Phys. Today 2002, 55, 48–54. [Google Scholar] [CrossRef]
- Ostoja-Starzewski, M. Towards thermoelasticity of fractal media. J. Therm. Stress 2007, 30, 889–896. [Google Scholar] [CrossRef]
- Povstenko, Y.Z. Fractional Thermoelasticity; Springer: New York, NY, USA, 2015. [Google Scholar]
- Matignon, D. Stability results for fractional differential equations with applications to control processing. In Proceedings of the International IMACS IEEE-SMC Multi Conference on Computational Engineering in Systems Applications, Lille, France, 9–12 July 1996; GERF, Ecole Centrale de Lille: Lille, France, 1996; pp. 963–968. [Google Scholar]
- Ge, Z.M.; Jhuang, W.R. Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos Solitons Fractals 2007, 33, 270–289. [Google Scholar] [CrossRef]
- Ge, Z.M.; Ou, C.Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals 2008, 35, 705–717. [Google Scholar] [CrossRef]
- Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D. LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 2013, 72, 301–309. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, G.; Li, C.; Kurths, J. Chaos synchronization in fractional differential systems. Philos. Trans. R. Soc. A 2013, 371, 20120155. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Alghamdi, B.S. Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal. Real World Appl. 2008, 9, 1727–1740. [Google Scholar] [CrossRef]
- Ciegis, R.; Bugajev, A. Numerical approximation of one model of the bacterial self-organization. Nonlinear Anal. Model. Control 2012, 17, 253–270. [Google Scholar]
- Sun, J.; Liu, Y.; Liu, G. Existence of solutions for fractional differential systems with antiperiodic boundary conditions. Comput. Math. Appl. 2012, 64, 1557–1566. [Google Scholar] [CrossRef] [Green Version]
- Senol, B.; Yeroglu, C. Frequency boundary of fractional order systems with nonlinear uncertainties. J. Frankl. Inst. 2013, 350, 1908–1925. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 348–360. [Google Scholar] [CrossRef] [Green Version]
- Kirane, M.; Ahmad, B.; Alsaedi, A.; Al-Yami, M. Non-existence of global solutions to a system of fractional diffusion equations. Acta Appl. Math. 2014, 133, 235–248. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 2015, 266, 615–622. [Google Scholar] [CrossRef]
- Henderson, J.; Luca, R. Nonexistence of positive solutions for a system of coupled fractional boundary value problems. Bound. Value Probl. 2015, 2015, 138. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.; Luca, R.; Tudorache, A. On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 2015, 18, 361–386. [Google Scholar] [CrossRef]
- Fazli, H.; Nieto, J.J.; Bahrami, F. On the existence and uniqueness results for nonlinear sequential fractional differential equations. Appl. Comput. Math. 2018, 17, 36–47. [Google Scholar]
- Wang, J.R.; Zhang, Y. Analysis of fractional order differential coupled systems. Math. Methods Appl. Sci. 2015, 38, 3322–3338. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals 2016, 83, 234–241. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58, 1838–1843. [Google Scholar] [CrossRef] [Green Version]
- Su, X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmudov, N.I.; Bawaneh, S.; Al-Khateeb, A. On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions. Mathematics 2019, 7, 279. https://doi.org/10.3390/math7030279
Mahmudov NI, Bawaneh S, Al-Khateeb A. On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions. Mathematics. 2019; 7(3):279. https://doi.org/10.3390/math7030279
Chicago/Turabian StyleMahmudov, Nazim I, Sameer Bawaneh, and Areen Al-Khateeb. 2019. "On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions" Mathematics 7, no. 3: 279. https://doi.org/10.3390/math7030279
APA StyleMahmudov, N. I., Bawaneh, S., & Al-Khateeb, A. (2019). On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions. Mathematics, 7(3), 279. https://doi.org/10.3390/math7030279