Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain
Abstract
:1. Introduction and Definitions
2. A Set of Lemmas
3. Main Results
4. Concluding Remarks and Observations
Author Contributions
Funding
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential subordination and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform Convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike Functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transform. Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Limited: Chichester, UK, 1985. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slov. 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Noor, K.I. On new classes of integral operators. J. Nat. Geom. 1999, 16, 71–80. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; Ellis Horwood Limited: Chichester, UK, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffer functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Uçar, H.E.Ö. Coefficient inequality for q-starlike Functions. Appl. Math. Comput. 2016, 76, 122–126. [Google Scholar]
- Sahoo, S.K.; Sharma, N.L. On a generalization of close-to-convex functions. Ann. Polon. Math. 2015, 113, 93–108. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the second Hankel derminant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar]
- Janteng, A.; Abdul-Halim, S.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Mishra, A.K.; Gochhayat, P. Second Hankel determinant for a class of analytic functions defined by fractional derivative. Internat. J. Math. Math. Sci. 2008, 2008, 153280. [Google Scholar] [CrossRef]
- Singh, G.; Singh, G. On the second Hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1–3. [Google Scholar]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2007, 6, 1–7. [Google Scholar]
- Duren, P.L. Univalent Functions (Grundlehren der Mathematischen Wissenschaften 259); Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Thomas, D.K.; Abdul-Halim, S. Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions. Bull. Malays. Math. Sci. Soc. 2017, 40, 1781–1790. [Google Scholar] [CrossRef]
- Efraimidis, I. A generalization of Livingston’s coefficient inequalities for functions with positive real part. J. Math. Anal. Appl. 2016, 435, 369–379. [Google Scholar] [CrossRef]
- Ali, M.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose element are the coefficients of univalent functions. Bull. Aust. Math. Soc. 2018, 97, 253–264. [Google Scholar] [CrossRef]
- Ramachandran, C.; Annamalai, S. On Hankel and Toeplitz determinants for some special class of analytic functions involving conical domains defined by subordination. Internat. J. Engrg. Res. Technol. 2016, 5, 553–561. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281–297. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain. Mathematics 2019, 7, 181. https://doi.org/10.3390/math7020181
Srivastava HM, Ahmad QZ, Khan N, Khan N, Khan B. Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain. Mathematics. 2019; 7(2):181. https://doi.org/10.3390/math7020181
Chicago/Turabian StyleSrivastava, Hari M., Qazi Zahoor Ahmad, Nasir Khan, Nazar Khan, and Bilal Khan. 2019. "Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain" Mathematics 7, no. 2: 181. https://doi.org/10.3390/math7020181
APA StyleSrivastava, H. M., Ahmad, Q. Z., Khan, N., Khan, N., & Khan, B. (2019). Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain. Mathematics, 7(2), 181. https://doi.org/10.3390/math7020181