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Abstract: This paper aims to present a Clenshaw–Curtis–Filon quadrature to approximate the
solution of various cases of Cauchy-type singular integral equations (CSIEs) of the second kind
with a highly oscillatory kernel function. We adduce that the zero case oscillation (k = 0) proposed
method gives more accurate results than the scheme introduced in Dezhbord et al. (2016) and
Eshkuvatov et al. (2009) for small values of N. Finally, this paper illustrates some error analyses and
numerical results for CSIEs.
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1. Introduction

Integral equations have broad roots in branches of science and engineering [1–6]. Cauchy-type
singular integral equations (CSIEs) of the second kind occur in electromagnetic scattering and quantum
mechanics [7] and are defined as:

au(x) + b
π ⨍

1

−1

u(y)K(x, y)
y − x dy = f (x), x ∈ (−1, 1). (1)

A singular integral equation with a Cauchy principal value is a generalized form of an airfoil equation
[8]. Here a and b are constants such that a2 + b2

= 1, b ≠ 0 and K(x, y) = eik(y−x) are the highly oscillatory
kernel function. The function f (x) is the Hölder continuous function, whereas u(x) is an unknown function.
The solution to the above-mentioned Equation (1) contains boundary singularities w(x) = (x + 1)α(1− x)β,
i.e., u(x) = w(x)g(x) and g(x) is a smooth function [9,10]. Then the above Equation (1) transforms into:

aw(x)g(x) + b
π ⨍

1

−1

w(y)g(y)eik(y−x)

y − x dy = f (x), x ∈ (−1, 1), (2)

where α, β ∈ (−1, 1) depend on a and b, such that:

α =
1

2πi
log ( a − ib

a + ib
) − N , β =

−1
2πi

log ( a − ib
a + ib

) − M, (3)

κ = −(α + β) = M + N.

Here M and N are integers in [−1, 1], whereas the index of the integral equation is called κ,
analogous to a class of functions, wherein the solution is to be sought. It is pertinent to mention that to
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produce integrable singularities in the solution, the index κ is restricted to three cases, [−1, 0, 1], but
the addressed paper considers only two cases for κ, i.e., κ ≤ 0. The value of the index κ depends on
different values for M and N [11–13]. A great number of real life practical problems, e.g., for κ = −1,
the so-called natched half-plane problem and another problem of a crack parallel to the free boundary
of an isotropic semi-infinite plane, that can be reduced to Cauchy singular integral equations are
addressed in [14–17]. Writing Equation (2) in operator form, we get [18]:

Hg = f , (4)

where:

Hg = aw(x)g(x) + b
π ⨍

1

−1

w(y)g(y)eik(y−x)

y − x dy.

Let us define another operator:

H′ f = aw∗(x) f (x) − b
π ⨍

1

−1

w∗(y) f (y)eik(y−x)

y − x dy, (5)

further:

HH′
= I i f κ > 0

HH′
= H′H = I i f κ = 0

H′H = I i f κ < 0

(6)

where w∗(x) = (1 + x)−α(1 − x)−β.
It is worthy mentioning the fact that the solution for CSIE exists but unfortunately it is not unique,

as CSIE has three solution cases for different values of κ. The aforementioned theorem appertains to
the existence of the solution of CSIE for case κ = 0.

Theorem 1. [13,15] (Existence of CSIEs) Let the singular integral Equation (2) be equivalent to a Fredholm
integral equation, which implies that every solution of a Fredholm integral equation is the solution of a singular
integral equation and vice versa.

Proof. Based on Equations (4)–(6) the SIE (2) can be transforms into:

g = H
′

f .

Furthermore, it can be written as a Fredholm integral equation:

u(y) + ∫
1

−1
N(y, τ)y(τ)dτ = F(y). (7)

where:

F(y) = b
π w(y)∫

1

−1

w∗(x) f (x)
y − x dx,

and:

N(y, τ) = aK(x, τ)w−1
−

b
π w(y)∫

1

−1

w∗(x)K(x, τ)
y − x dx.

Thus the claimed theorem is proven.
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Moreover, for Equation (1) we have three cases for κ:

κ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, α < 0,−1 < β, α ≠ β,

−1, 0 < β, α < 1, α ≠ β,

0, α = −β, ∣β∣ ≠ 1
2 .

(8)

Similarly, solution cases of the CSIE of the second type depending on values of κ are:

• 1: The solution u(x) for κ = 1 is unbounded at both end points x = ±1:

u(x) = a f (x) − bw(x)
π e−ikx ⨍

1

−1

w∗(y) f (y)eiky

y − x dy + Cw(x), (9)

where C is an arbitrary constant such that:

∫
1

−1
u(y)eikydy = C. (10)

Equation (2) gets infinitely many solutions but is unique for the above condition.

• 2: The solution u(x) is bounded for κ = 0 at x = ±1 and unbounded at x = ∓1:

u(x) = a f (x) − bw(x)
π e−ikx ⨍

1

−1

w∗(y) f (y)eiky

y − x dy, (11)

Equation (2) gets a unique solution.

• 3: The solution u(x) is bounded at both end points x = ±1 for κ = −1:

u(x) = a f (x) − bw(x)
π e−ikx ⨍

1

−1

w∗(y) f (y)eiky

y − x dy. (12)

Equation (2) has no solution unless it satisfies the following condition:

∫
1

−1

f (y)eiky

w(y) dy = 0. (13)

For many decades researchers have been struggling to find an efficient method to get these
solutions. The Galerkin method, polynomial collocation method, Clenshaw–Curtis–Filon method and
the steepest descent method are some of the eminent methods among many others for the solution of
SIEs [19–24]. Moreover, Chakarbarti and Berge [25] for a linear function f (x) gave an approximated
method based on polynomial approximation and Chebyshev points. Z.K. Eshkuvatov [10] introduced
the method taking Chebyshev polynomials of all four kinds for all four different solution cases
of the CSIE. Reproducing the kernel Hilbert space (RKHS) method has been proposed by A.
Dezhbord et al. [26]. The representation of solution u(x) is in the form of a series in reproducing
kernel spaces.

This research work introduces the Clenshaw–Curtis–Filon quadrature to approximate the solution
for various cases of a Cauchy singular integral equation of the second kind, Equation (1), at equally
spaced points xi. So the integral equation takes the form:

uN(xi) = a f (xi) −
bw(xi)

π e−ikxi ⨍
1

−1

w∗(y) fN(y)eiky

y − xi
dy, (14)
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depending on the κ. Furthermore, the results of the numerical example are compared with [10,26] for
k = 0. Comparison reveals that the addressed method gives a more accurate approximation than these
methods, Section 4 provides this phenomena. The rest of the paper is organised as follows; Section 2
defines the numerical evaluation of the Cauchy integral in CSIE and approximates the solution at
equally spaced points xi. Section 3 represents some error analyses for CSIE. Section 4 concludes this
paper by giving numerical results.

2. Description of the Method

The presented Clenshaw–Curtis–Filon quadrature to approximate the integral term

I(α, β, k, x) = ⨍1
−1

w(y) f (y)eiky

y−x dy consists of replacing function f (y) by its interpolation polynomial PN(y)
at Clenshaw–Curtis point set, yj = cos jπ

N , j = 0, 1,⋯, N. Rewriting the interpolation in terms of the
Chebyshev series:

f (y) ≈ PN(y) =
N

∑
n=0

′′cnTn(y). (15)

Here Tn(y) is the Chebyshev polynomial of the first kind of degree n. Double prime denotes a
summation, wherein the first and last terms are divided by 2. The FFT is used for proficient calculation
of the coefficient cn [27,28], defined as:

cn =
2
N

N

∑
j=0

′′ f (yj)Tn(yj).

Let it be that for any fixed x we can elect N s.t x ∉ {yj}; then the interpolation polynomial is
rewritten in the form of a Chebyshev series as:

P̄N+1(y) =
N+1

∑
n=0

anTn(y)

where an can be computed in O(N) operations once cn are calculated [27,29]. The
Clenshaw–Curtis–Filon quadrature rule for integral I(α, β, k, x) is defined as:

I(α, β, k, x) = ⨍
1

−1

w(y) f (y)eiky

y − x dy = ⨍
1

−1

w(y)P̄N+1(y)eiky

y − x dy =

N+1

∑
n=0

an Mn(α, β, k, x), (16)

where Mn(α, β, k, x) = ⨍1
−1

w(y)Tn(y)eiky

y−x dy are the modified moments. The forthcoming subsection defines
the method to compute the moments Mn(α, β, k, x) efficiently.

Computation of Moments

A well known property for Tn(y) is defined as [30]:

Tn(y) − Tn(x)
y − x = 2

n−1

∑
j=0

′

Un−1−j(y)Tj(x) = 2
n−1

∑
j=0

′

Un−1−j(x)Tj(y), (17)

where the prime indicates the summation whose first term is divided by 2 and Un(y) is the Chebyshev
polynomial of the second kind.
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Mn(α, β, k, x) = ⨍
1

−1

w(y)Tn(y)eiky

y − x dy

= ⨍
1

−1

w(y)(Tn(y) − Tn(x) + Tn(x))eiky

y − x dy

= ⨍
1

−1

w(y)(Tn(y) − Tn(x))eiky

y − x dy + Tn(x)⨍
1

−1

w(y)eiky

y − x dy

= ∫
1

−1
w(y)(2

n−1

∑
j=0

′

Un−1−j(x)Tj(y))eikydy + Tn(x)⨍
1

−1

w(y)eiky

y − x dy

= 2
n−1

∑
j=0

′

Un−1−j(x)∫
1

−1
w(y)Tj(y)eikydy + Tn(x)⨍

1

−1

w(y)eiky

y − x dy

(18)

Piessens and Branders [31] have addressed the fourth homogenous recurrence relation for the
integral without singularity Mn(α, β, k) = ∫ 1

−1 w(y)Tj(y)eikydy.

ikMn+2 + 2(n + α + β + 2)Mn+1 − 2(2α − 2β + ik)Mn − 2(n − α − β − 2)Mn−1 + ikMn−2 = 0, n ≥ 2, (19)

along with four initial values:

M
0
0 = 2α+β+1e−ik Γ(α + 1)Γ(β + 1)

Γ(α + β + 2) F1(α + 1; α + β + 2; 2ik),

M
0
1 = M0(x, α + 1, β, k) − M0(x, α, β, k),

M
0
2 =

i
k
[2(α + β + 2)M1 − (2α − 2β + ik)M0],

M
0
3 =

i
k
[2(α + β + 3)M2 − (4α − 4β + ik)M1 + 2(α + β + 1)M0],

(20)

where F1(α + 1; α + β + 2; 2ik) stands for confluent hypergeometric function of the first kind.
Unfortunately the discussed recurrence relation for moments Mn(α, β, k) is numerically unstable
in the forward direction for n > k; in this sense by applying Oliver’s algorithm these modified moments
can be computed efficiently [31,32].

The integral ⨍1
−1

w(y)eiky

y−x dy is computed by the steepest descent method; the original idea was given
by Huybrenchs and Vandewalle [33] for sufficiently high oscillatory integrals.

Proposition 1. The Cauchy singular integral ⨍1
−1

w(y)eiky

y−x dy can be transformed into:

⨍
1

−1

w(y)eiky

y − x dy = S−1 − S1 + iπw(x)eikx (21)

where:

S−1 = iα+1e−ik ∫
∞

0

yα(2 − iy)β

−1 + iy − x
e−kydy

S1 = (−i)β+1eik ∫
∞

0

yβ(2 + iy)α

1 + iy − x
e−kydy.

(22)

Proof. Readers are referred to [34] for more details.
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The generalized Gauss Laguerre quadrature rule can be used to evaluate the integrals S−1 and S1

in the above equation by using the command lagpts in chebfun [35]. Let {yα
j , wα

j }
k

j=1
be the nodes and

weights of the weight functions yαe−y and {yβ

j , wβ

j }
k

j=1
be the nodes and weights of the weight functions

yβe−y in accordance with the generalized Gauss Laguerre quadrature rule. Moreover, these integrals
can be approximated by:

S−1 ≈ Qk = ( i
k
)

α+1

e−ik
k

∑
j=1

wα
j

(2 − (i/k)yα
j )

β

(−1 + (i/k)yα
j − x)

S1 ≈ Qk = ( i
k
)

β+1

eik
k

∑
j=1

wβ

j

(2 + (i/k)yβ

j )
α

(−1 + (i/k)yβ

j − x)
.

(23)

Mn(α, β, k, x) is obtained by substituting Equations (19) and (21) into the last equality of Equation
(18). Finally, together with Equations (16) and (14), the approximate solution:

uN(xi) = a f (xi) −
bw(xi)

π e−ikxi
N+1

∑
n=0

an Mn(α, β, k, x), (24)

for CSIE (1) is derived for different solution cases at equally spaced points.

3. Error Analysis

Lemma 1. [36,37] Let f (x) be a Lipschitz continuous function on [−1, 1] and PN[ f ] be the interpolation
polynomial of f (x) at N + 1 Clenshaw–Curtis points. Then it follows that:

lim
N→∞

∥ f − PN[ f ]∥∞ = 0. (25)

In particular,

• (i) if f (x) is analytic with ∣ f (x)∣ ≤ M in an ellipse ερ (Bernstein ellipse) with foci ±1 and major and minor
semiaxis lengths summing to ρ > 1, then:

∥ f − PN[ f ]∥∞ ≤
4M

ρN(ρ − 1)
. (26)

• (ii) if f (x) has an absolutely continuous (κ0 − 1)st derivative and a κ0th derivative f (κ0) of bounded variation
Vκ0 on [−1,1] for some κ0 ≥ 1, then for N ≥ κ0 + 1:

∥ f − PN[ f ]∞∥ ≤
4Vκ0

κ0πN(N − 1)⋯(N − κ0 + 1) . (27)

Proposition 2. [29] Suppose that f (y) ∈ CR+2[−1, 1] with R = ⌈min{α, β}⌉, then the error of the
Clenshaw–Curtis–Filon quadrature rule for integral I[ f ] satisfies:

EN = ∣I(α, β, k, x) − IN(α, β, k, x)∣ = O(k−2−min{α,β}), k →∞. (28)

Theorem 2. Suppose that uN(x) is the approximate solution of u(x) of CSIE for case κ ≤ 0, then for error
∣u(x) − uN(x)∣, x ∈ (−1, 1), the Clenshaw–Curtis–Filon quadrature is convergent, i.e.:

lim
N→∞

∣u(x) − uN(x)∣ = 0. (29)
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Proof. Suppose that x ∉ YN+1, f ∈ C2[−1, 1] and let

Q(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f (y)− f (x)
y−x , y ≠ x

f
′

(x), y = x.

It is stated that Q(y) ∈ C1[−1, 1] and ∥Q
′

∥∞ ≤
3
2∥ f

′′

∥∞, in addition R(y) =
PN+1(y)− f (x)

y−x is a
polynomial of degree at most N. Then error for solutions u(x) and uN(x) to CSIE for cases κ ≤ 0
is defined as:

u(x) = a f (x) − b
π e−ikxw(x)⨍

1

−1

w∗(y) f (y)eiky

y − x dy,

uN(x) = a f (x) − b
π e−ikxw(x)⨍

1

−1

w∗(y)P̄N+1(y)eiky

y − x dy.

Then:

∣u(x) − uN(x)∣ =
»»»»»»»»
a( f (x) − f (x)) − b

π e−ikxw(x)∫
1

−1
w∗(y)(Q(y) − R(y))eikydy

»»»»»»»»
≤

b
π w(x)∫

1

−1
w∗(y)dy∥Q(y) − R(y)∥∞

= D∥Q(y) − R(y)∥∞.

where D =
bw(x)2α+β+1Γ(α+1)Γ(β+1)

πΓ(α+β+2) .

4. Numerical Examples

Example 1. Let us consider the CSIE of the second kind:

u(x)
√

2
+

1√
2π

e−ikx ⨍
1

−1

u(y)eiky

y − x dy =
f (x)
√

2
(30)

where f (x) = cos(x). For x = 0.5 and a = b = 1√
2
, we get values of α = 0.25 and β = 0.25 from Equation (3) for

κ = 0. The absolute error for u(x) is presented in Tables 1 and 2 below.

Table 1. Absolute error for κ = 0, bounded at x = 1.

k N = 5 N = 10 N = 20

50 4.6387 × 10−9 3.9207 × 10−14 1.1102 × 10−16

100 1.0881 × 10−9 4.9564 × 10−15 0
1000 3.8093 × 10−11 4.0030 × 10−16 2.4825 × 10−16

10,000 5.1593 × 10−13 2.2204 × 10−16 1.1102 × 10−16

Table 2. Absolute error for κ = 0, bounded at x = −1.

k N = 5 N = 10 N = 20

50 1.1156 × 10−9 9.1854 × 10−15 1.1102 × 10−16

100 3.2791 × 10−10 5.6610 × 10−16 1.1102 × 10−16

1000 1.7225 × 10−12 2.2204 × 10−16 2.2204 × 10−16

10,000 7.3056 × 10−15 3.3307 × 10−16 3.3307 × 10−16
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Example 2. The mixed boundary value problem is described in Figure 1.

Figure 1. The mixed boundary value problem.

Taken from [18], it has the analytic solution φ(x, t) = 2
π

arctan 2y
1−x2−t2 . It can further be reduced to the

following integral equation for κ = −1 and for α = β =
1
2 .

−1
π ⨍

1

−1

u(y)
y − x dy = C1 +

1
π [1 − x

2
log(1 − x) + 1 + x

2
log(1 + x) − log(2 + x) − 1] (31)

Here C1 is a constant defined as C1 = 0.4192007182789807. Furthermore if u(x) is known, the solution of
the above boundary value can be derived as:

φ(µ, ν) = 1
π ∫

∞

−∞

νu(y, 0)
(y − µ)2 + ν2

dy

where:

u(y, 0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(y) + (1 − y)/2, ∣y∣ ≤ 1,

1 t ∈ [−2,−1],
0, otherwise.

(32)

So here we just solve u(x) for simplicity. Figure 2 illustrates the absolute error for u(x).
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Figure 2. The absolute error for u(x), for x = 0.6.

Figure 2 shows that absolute error for u(x) decreases for greater values of N.

Example 3. [10,26] For CSIE with k = 0:

∫
1

−1

u(y)
y − x dy = x4

+ 5x3
+ 2x2

+ x −
11
8

(33)

in the case a = 0 and b = 1, where α and β are derived from Equation (3) and the exact values of u(y) for cases
κ ≤ 0 for the solution bounded at x = −1, x = 1, x = ±1 are given as:

u(y) = 1
π

√
1 + y
1 − y

[y4
+ 4y3

− 5/2y2
+ y − 7/2]

u(y) = −1
π

√
1 − y
1 + y

[y4
+ 6y3

+ 15/2y2
+ 6y + 7/2]

u(y) = −1
π

√
1 − y2[y3

+ 5y2
+ 5/2y + 7/2].

(34)

Table 3 presents the absolute error for the above three cases.

Table 3. Absolute error for case κ ≤ 0, k = 0.

x Error

κ = −1 κ = 0, boundned atx = −1 κ = 0, boundned atx = 1

−0.6 0 1.1102 × 10−16 4.4409 × 10−16

−0.2 3.3307 × 10−16 2.2204 × 10−16 4.4409 × 10−16

0.2 2.2204 × 10−16 4.4409 × 10−16 0
0.6 0 2.2204 × 10−16 4.4409 × 10−16
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Clearly, Table 3 shows that obtained absolute errors are significantly good for really small values of N,
N = 5, that can never be achieved in [10,26]. The exact value for u(x) in the above examples is obtained through
Mathematica 11, while the approximated results are calculated using Matlab R2018a on a 4 GHz personal laptop
with 8 GB of RAM. For Example 2 Matlab code and Mathematica command is provided as supplementary
material.

5. Conclusions

In the presented research work, the Clenshaw–Curtise–Filon quadrature is used to get higher
order accuracy. Absolute errors are presented in Tables 1 and 2 for solutions of highly oscillatory CSIEs
for κ = 0. For larger values of N, Figure 2 shows the absolute error for u(x) for mixed the boundary
value problem, whereas for frequency k = 0, the proposed quadrature posseses higher accuracy than
the schemes claimed in [10,26]; Table 3 addresses this very well. This shows that the quadrature rule is
quite accurate with the exact solution.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/7/10/872/s1,
for Example 2, Figure 2: The absolute error for u(x), for x = 0.6.
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