Extending the Applicability of Two-Step Solvers for Solving Equations
Abstract
1. Introduction
2. Definitions and Auxiliary Lemmas
3. Convergence
4. The Uniqueness Ball for the Solution of Equations
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Argyros, I.K.; Magréñan, A.A. A Contemporary Study of Iterative Methods; Elsevier (Academic Press): New York, NY, USA, 2018. [Google Scholar]
- Argyros, I.K.; Magréñan, A.A. Iterative Methods and Their Dynamics with Applications; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Hernandez, M.A.; Rubio, M.J. The Secant method for nondifferentiable operators. Appl. Math. Lett. 2002, 15, 395–399. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Ren, H.; Argyros, I.K. A new semilocal convergence theorem for a fast iterative method with nondifferentiable operators. J. Appl. Math. Comp. 2010, 34, 39–46. [Google Scholar] [CrossRef]
- Shakhno, S.M. About the difference method with quadratic convergence for solving nonlinear operator equations. Matematychni Studii 2006, 26, 105–110. (In Ukrainian) [Google Scholar]
- Shakhno, S.M. On the secant method under generalized Lipschitz conditions for the divided difference operator. Proc. Appl. Math. Mech. 2007, 7, 2060083–2060084. [Google Scholar] [CrossRef]
- Bartish, M.Y. About one iterative method of solving functional equations. Dopov. Acad. Nauk Ukr. RSR. Ser. A 1968, 5, 387–391. (In Ukrainian) [Google Scholar]
- Bartish, M.Y.; Shcherbyna, Y.M. About one difference method of solving operator equations. Dopov. Acad. Nauk Ukr. RSR. Ser. A 1972, 7, 579–582. (In Ukrainian) [Google Scholar]
- Shakhno, S.M. On a two-step iterative process under generalized Lipschitz conditions for first-order divided differences. J. Math. Sci. 2010, 168, 576–584. [Google Scholar] [CrossRef]
- Argyros, I.K.; Hilout, S. Newton-Kantorovich approximations under weak continuity conditions. J. Appl. Math. Comput. 2011, 37, 361–375. [Google Scholar] [CrossRef]
- Zabrejko, P.P.; Nguen, D.F. The majorant method in the theory of Newton-Kantorovich approximations and the Ptâk error estimates. Numer. Funct. Anal. Optim. 1987, 9, 671–684. [Google Scholar] [CrossRef]
- Argyros, I.K. Convergence and Applications of Newton-Type Iterations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Cătinas, E. On some iterative methods for solving nonlinear equations. Revue d’Analyse Numérique et de Theorie de l’Approximation. 1994, 23, 47–53. [Google Scholar]
- Shakhno, S.M.; Mel’nyk, I.V.; Yarmola, H.P. Analysis of the convergence of a combined method for the solution of nonlinear equations. J. Math. Sci. 2014, 201, 32–43. [Google Scholar] [CrossRef]
- Shakhno, S.M. Combined Newton-Kurchatov method under the generalized Lipschitz conditions for the derivatives and divided differences. J. Comput. Appl. Math. Kiev. 2015, 2, 78–89. [Google Scholar]
- Shakhno, S.M.; Yarmola, H.P. Two-point method for solving nonlinear equation with nondifferentiable operator. Matematychni Studii 2011, 36, 213–222. (In Ukrainian) [Google Scholar]
- Shakhno, S.; Yarmola, H. Two-step method for solving nonlinear equations with nondifferentiable operator. J. Comput. Appl. Math. Kiev. 2012, 3, 105–115. [Google Scholar] [CrossRef]
- Shakhno, S.M. Convergence of the two-step combined method and the uniqueness of solution of the nonlinear operator equations. J. Comput. Appl. Math. 2014, 261, 378–386. [Google Scholar] [CrossRef]
- Chen, X.; Nashed, Z.; Qi, L. Convergence of Newton’s method for singular smooth and nonsmoot hequations using adaptive outher inverses. SIAM J. Optim. 1997, 7, 445–462. [Google Scholar] [CrossRef]
- Chen, X.; Yamamoto, T. Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. Optim. 1989, 10, 37–48. [Google Scholar] [CrossRef]
- Esquerro, J.A.; Hernández, M.A. Newton’s Method: An Updated Approach of Kantorovich’s Theory; Frontiers in Mathematics; Birkhäuser: Basel, Schwitzerland, 2017. [Google Scholar]
- Elber, G.; Kim, M.S. Geometric constraint solver using multivariate rational spline functions. In Proceedings of the 6th ACM Symposium on Solid Modeling and Applications, Ann Arbor, MI, USA, 4–8 June 2001; pp. 1–10. [Google Scholar]
- Aizenshtein, M.; Bartoň, M.; Elber, G. Global solutions of well-constrained transcendental systems using expression trees and a single solution test. Comput. Aided Geom. Des. 2012, 29, 265–279. [Google Scholar] [CrossRef]
- Bartoň, M. Solving polynomial systems using no-root elimination blending schemes. Comput.-Aided Des. 2011, 43, 1870–1878. [Google Scholar] [CrossRef]
- Morgan, A.P. A homotopy for solving polynomial systems. Appl. Math. Comput. 1986, 18, 87–92. [Google Scholar] [CrossRef]
- Morgan, A.; Sommese, A. Computing all solutions to polynomial systems using homotopy continuation. Appl. Math. Comput. 1987, 24, 115–138. [Google Scholar] [CrossRef]
- Wang, X. Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. Anal. 2000, 20, 123–134. [Google Scholar] [CrossRef]
- Werner, W. Über ein Verfahren der Ordnung zur Nullstellenbestimmung. Numer. Math. 1979, 32, 333–342. [Google Scholar] [CrossRef]
- Shakhno, S.M. Convergence of the two-step Newton type method for solving of nonlinear equations under the generalized Lipschitz conditions. Phys.-Math. Model. Inf. Technol. 2012, 16, 163–172. (In Ukrainian) [Google Scholar]
- Shakhno, S.M. On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations. J. Comp. App. Math. 2009, 231, 222–235. [Google Scholar] [CrossRef]
| p | ε | Method | |||
|---|---|---|---|---|---|
| (3) | (4) | (38) | (6) | ||
| 1 | 85 | 7 | 10 | 7 | |
| 266 | 10 | 12 | 8 | ||
| 10 | 102 | 110 | 25 | 14 | |
| 284 | 20 | 27 | 16 | ||
| 100 | 110 | 28 | 39 | 23 | |
| 292 | 30 | 41 | 24 | ||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, I.K.; Shakhno, S. Extending the Applicability of Two-Step Solvers for Solving Equations. Mathematics 2019, 7, 62. https://doi.org/10.3390/math7010062
Argyros IK, Shakhno S. Extending the Applicability of Two-Step Solvers for Solving Equations. Mathematics. 2019; 7(1):62. https://doi.org/10.3390/math7010062
Chicago/Turabian StyleArgyros, Ioannis K., and Stepan Shakhno. 2019. "Extending the Applicability of Two-Step Solvers for Solving Equations" Mathematics 7, no. 1: 62. https://doi.org/10.3390/math7010062
APA StyleArgyros, I. K., & Shakhno, S. (2019). Extending the Applicability of Two-Step Solvers for Solving Equations. Mathematics, 7(1), 62. https://doi.org/10.3390/math7010062

