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Abstract: We present a local convergence of two-step solvers for solving nonlinear operator equations
under the generalized Lipschitz conditions for the first- and second-order derivatives and for the
first order divided differences. In contrast to earlier works, we use our new idea of center average
Lipschitz conditions, through which, we define a subset of the original domain that also contains the
iterates. Then, the remaining average Lipschitz conditions are at least as tight as the corresponding
ones in earlier works. This way, we obtain weaker sufficient convergence criteria, larger radius of
convergence, tighter error estimates, and better information on the solution. These extensions require
the same effort, since the new Lipschitz functions are special cases of the ones in earlier works. Finally,
we give a numerical example that confirms the theoretical results, and compares favorably to the
results from previous works.

Keywords: nonlinear equation; iterative process; the convergence order; radius of convergence;
non-differentiable operator; generalized Lipschitz condition

1. Introduction

Let X, Y stand for Banach spaces, D ⊂ X denote an open and convex set.
Consider the nonlinear equation

H(x) ≡ F(x) + G(x) = 0 (1)

where F : D → Y, G : D → Y ; F is a differentiable operator in the sense of Fréchet, and G is a
continuous operator.

The difference one-step methods (Secant method, Kurchatov method) [1–7] and two-step
method [8–10]:

xk+1 = xk − [H(xk, yk)]
−1H(xk)

yk+1 = xk+1 − [H(xk, yk)]
−1H(xk+1), k = 0, 1, 2, . . . ,

(2)

where H(xk, yk) is the first-order divided difference, which can be applied for solving nonlinear
equations with nondifferentiable operator (Equation (1)). However, it is desirable to build iterative
methods that take into account properties of the problem (Equation (1)). In particular, we can use only
derivative F′(xk) of differentiable part of operator instead of full derivative H′(xk), which in fact, does
not exist. The method [11,12]:

xk+1 = xk − F′(xk)
−1(F(xk) + G(xk)), k = 0, 1, 2, . . . (3)
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obtained using this approach converges slowly. More efficient are methods that use sum of the
derivatives of the differentiable part and divided difference of the nondifferentiable part of the operator
instead of the full derivative H′(xk). In particular, the one-step Newton-Secant method [13–15]:

xk+1 = xk − (F′(xk) + G(xk, xk−1))
−1

(F(xk) + G(xk)), k = 0, 1, 2, . . . (4)

and Newton-Kurchatov method [16,17]:

xk+1 = xk − (F′(xk) + G(2xk − xk−1, xk−1))
−1

(F(xk) + G(xk)), k = 0, 1, 2, . . . (5)

The method (3) has linear convergence order, Newton-Secant method (4) has order of convergence
not higher than

(
1 +
√

5
)

/2 and Newton-Kurchatov method (5) has a quadratic convergence order.
In works [18,19], we first proposed two-step solvers for solving Equation (1) defined as:

xk+1 = xk −
[

F′
(

xk+yk
2

)
+ G(xk, yk)

]−1
(F(xk) + G(xk))

yk+1 = xk+1 −
[

F′
(

xk+yk
2

)
+ G(xk, yk)

]−1
(F(xk+1) + G(xk+1)), k = 0, 1, 2, . . . ,

(6)

where x0, y0 are given.
Just like Newton–Secant method, which was studied by many authors, the new method requires

at each iteration the computation of one operator Ak and its inverse. The operator Ak = F′
(

xk+yk
2

)
+

G(xk, yk) consists of a combination of a Fréchet derivative of one part of the operator (the differentiable
part) and the divided difference of the second part (which is, generally speaking, nondifferentiable).
The number of computations of the function value increases by one at each step. Therefore, the number
of computations at one iteration is almost identical in both methods. However, the convergence order
of the new method is higher (1 +

√
2 ≈ 2.41 vs. ≈ 1.62).

The investigations of me thod (6) have been conducted under Hölder’s conditions for the second
order derivatives from F and usual Lipschitz conditions for the first order divided differences of
G [18] of Equation (1) and under generalized Lipschitz conditions for the second order derivatives and
divided differences of the first order [19].

There is a plethora of problems from computational sciences, that through mathematical
modelling, can look like Equation (1) with a nonzero G. As an example, boundary value problems
of first and second order appear in all branches of experimental sciences, e.g., Newton’s second
law, in population dynamic modes, evaluating concentrations of different reagents during a reaction,
etc. [20–22]. Let us consider nonlinear integral equation of Hammerstein-type defined as:

x(s) = v(s) +
t∫

0

Q(s, t)(λx(t)1+p + µx(t)q)dt

where v(s) ∈ C[0, 1], s ∈ [a, b], p, q ∈ [0, 1], and Q is a continuous kernel. Clearly, this equation can
be written in two parts with the second part involving the form x(t)q and related to a nontrivial G.
In particular, we can define F : C[0, 1]→ C[0, 1] and G : C[0, 1]→ C[0, 1] as:

F(x)(s) = x(s)− v(s)− λ
b∫
a

Q(s, t)x(t)1+pdt,

G(x)(s) = −µ
b∫
a

Q(s, t)x(t)qdt, µ 6= 0

and
H(x)(s) = F(x)(s) + G(x)(s)
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The discretized form of equation H(x)(s) = 0 can also be written in a similar form where the
discretized G is also nontrivial and nondifferentiable [22]. Therefore, there is a strong motivation for
studying two-step solver (6) for a nonzero G.

We also like to bring to the attention of the motivated reader the works in References [23–25], which
constitute subdivision-based solvers seeking all roots in the domain of interest using Newton’s method
provided the domain is sufficiently small. These solvers can be used to include a non-differentiable
part. Moreover, in References [26,27], the continuation method has also been used as another powerful
tool for finding roots. However, these methods involve systems of equations on Ri and cannot provide
information about solutions of Equation (1) in a Banach space setting. In practice, one may use
our results for the original equation, and the aformentioned references for the discretized versions,
which are systems in Ri.

In this work we continue to study a combined method (6) for solving nonlinear Equation (1).
Using more precise estimates on the distances involved, under weaker hypotheses, and under the
same computational cost, we provide an analysis of method (6) with the following advantages over
the corresponding results in Reference [19]: larger convergence domain, finer error estimates on the
distances involved, and an at least as precise information on the location of the solution.

The rest of the paper is structured as follows: Section 2 contains the definitions and auxiliary
lemmas, in Sections 3 and 4, we present the local convergence analysis of method (6) and the uniqueness
ball for solution of equation, respectively. In Section 5, we provide the numerical example. The article
ends with some conclusions.

2. Definitions and Auxiliary Lemmas

Definition 1. Let G : D → Y be a nonlinear operator and x, y ∈ D. If a linear operator G(x, y) satisfies the
condition:

G(x, y)(x− y) = G(x)− G(y) (7)

then it is called a divided difference of G at the points x and y.

Define B(x0, r) = {x : ‖x− x0‖ < r} and denote by B(x0, r) its closure.

Lemma 1 [28]. Let ϕ(t) = 1
t

t∫
0

λ(u)du, 0 ≤ t ≤ r, where λ(u) is a positive integrable function and

nondecreaing on [0, r]. Then ϕ(t) is nondecreasing monotonically.

Lemma 2 [19]. Let ψ(t) = 1
t3

t∫
0

µ(u)(t− u)2du, 0 ≤ t ≤ r, where µ(u) is a positive integrable function and

nondecreasing monotonically on [0, r]. Then ψ(t) is nondecreasing monotonically.

Lemma 3 [28]. Let p(t) = 1
t

t∫
0
(t− u)M(u)du, 0 ≤ t ≤ r, where M is a positive integrable function and a

nondecreasing monotonically function on [0, r] . Then p(t) is increasing monotonically.

3. Convergence

Let B(x∗, r) ⊆ D, and r0, r1 be the solutions of the systems of equations:

Jτ2
0 + Cτ1 = 1[

Jτ2
0 + E(2τ0 + τ1)

]
τ0 = τ1

(8)

where parameters J, r, E, and C are given in Theorem 1.
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Definition 2. We say that the divided difference G(·, ·) satisfies the center-Lipschitz condition on Ω with M0

average if:

‖H′(x∗)
−1(G(x, y)− G′(x∗))‖ ≤

‖x−x∗‖+‖y−x∗‖∫
0

M0(z)dz (9)

Definition 3. We say that the operator F′ satisfies the center-Lipschitz condition on Ω with L0 average if:

‖H′(x∗)
−1(F′(x)− F′(x∗))‖ ≤

ρ(x)∫
0

L0(u)du f or each x ∈ Ω. (10)

for each x, y ∈ Ω ∈ S
(

x∗, R
2

)
⊂ Ω, and some R > 0.

Define function ζ on the interval [0, ∞) as:

ζ(t) =
t∫

0

L0(u)du +

2t∫
0

M0(z)dz (11)

Suppose that the equation
ζ(t) = 1 (12)

has positive solutions. Denote by s the smallest such solution. Set Ω0 = Ω ∩ S(x∗, s).

Definition 4. We say that the operatorF′ satisfies the restricted Lipschitz condition on Ω0 with L average if:

‖H′(x∗)
−1(F′(y)− F′(x))‖ ≤

‖y−x‖∫
0

L(u)du f or each x, y ∈ Ω0 (13)

Definition 5. We say that the divided difference G(·, ·) satisfies the restricted Lipschitz condition on Ω0 ×Ω0

with M average if:

‖H′(x∗)
−1(G(x, y)− G(u, v))‖ ≤

‖x−u‖+‖y−v‖∫
0

M(z)dz (14)

for each x, y, u, v ∈ Ω ∈ S(x∗, R
4 ) ⊂ Ω and some R > 0.

Definition 6. We say that the operator F′′ satisfies the restricted Lipschitz condition on Ω0 with N average if:

‖H′(x∗)
−1(F′′ (y)− F′′ (x))‖ ≤

‖y−x‖∫
0

N(u)du f or each x, y ∈ Ω0 (15)

Definition 7 [19]. We say that the operator F′ satisfies the Lipschitz condition on Ω with L1 average if:

‖H′(x∗)
−1(F′(y)− F′(x))‖ ≤

‖y−x‖∫
0

L1(u)du f or each x, y ∈ Ω (16)
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Definition 8 [19]. We say that the divided difference G(·, ·) satisfies the Lipschitz condition on Ω×Ω with
M1 average if:

‖H′(x∗)
−1(G(x, y)− G(u, v))‖ ≤

‖x−u‖+‖y−v‖∫
0

M1(z)dz (17)

for each x, y, u, v ∈ Ω ∈ S(x∗, R
4 ) ⊂ Ω and some R > 0.

Definition 9. We say that the operator F′′ satisfies the Lipschitz condition on Ω with N1 average if:

‖H′(x∗)
−1(F′′ (y)− F′′ (x))‖ ≤

‖y−x‖∫
0

N1(u)du f or each x, y ∈ Ω. (18)

Remark 1. We have that
Ω0 ⊆ Ω. (19)

Hence, if follows from these definitions that for each t ∈ [0, λ] for some λ > 0

L0(t) ≤ L1(t) (20)

L(t) ≤ L1(t) (21)

and
M(t) ≤ M1(t) (22)

Then, (L0, L), M can replace L1, M1 in Reference [19] to obtain improved results as already noted in the
introduction of this study.

The radius of the convergence ball and the order of convergence of the method (6) are defined by the following
theorem.

Theorem 1. LetH(x) ≡ F(x) + G(x) be a nonlinear operator, defined in an open convex subset D of space X
with values in the space Y. Suppose that:

(i) Let H(x∗) ≡ 0 for some x∗ for which H(x∗)−1 exists;
(ii) Conditions (9), (10), (13), and (15) are satisfied, s exists and is given in Reference [12].
(iii) r > 0 satisfies the inequality

1
8

r∫
0

N(u)(r− u)2du + r
3r/2∫

0
L(u)du + r

3r∫
0

M(u)du

r

(
1−

r∫
0

L0(u)du−
2r∫
0

M0(u)du

) ≤ 1 (23)

Then, for all x0 ∈ B(x∗, r0) and y0 ∈ B(x∗, r1) sequences {xk}k∈N and {yk}k∈N , as defined according
to formulas (6), converge to the solution x∗, xk ∈ B(x∗, r0) and yk ∈ B(x∗, r1) for k = 0, 1, 2, . . . and the
estimations are being fulfilled:

ρ(xk+1) = ‖xk+1 − x∗‖ ≤ Jρ(xk)
3 + Cρ(xk)ρ(yk), k = 0, 1, 2, . . . ,

ρ(yk+1) = ‖yk+1 − x∗‖ ≤ Jρ(xk+1)
3 + E(ρ(xk) + ρ(xk+1) + ρ(yk))ρ(xk+1), k = 0, 1, 2, . . . ,

(24)
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where

J = Q0
8ρ(x0)

3

ρ(x0)∫
0

N(u)(ρ(x0)− u)2du;E = Q0
z0

(
z0/2∫

0
L(u)du +

z0∫
0

M(u)du

)
;

C = Q0
ρ(y0)

(
ρ(y0)/2∫

0
L(u)du +

ρ(y0)∫
0

M(u)du

)

Q0 =

(
1−

ρ(x0+y0)/2∫
0

L0(u)du−
ρ(x0)+ρ(y0)∫

0
M0(u)du

)−1

z0 = ρ(x0) + ρ(y0) + ρ(x1).

(25)

Sequences {xk}k∈N and {yk}k∈N converge to x∗ with order 1 +
√

2.

Proof. Pick x0 ∈ B(x∗, r0) and y0 ∈ B(x∗, r1) arbitrarily.

By Lemmas 1 and 2 we get, that 1
t

t∫
0

L0(u)du, 1
t

t∫
0

L(u)du, 1
t

t∫
0

M(u)du, and 1
t3

t∫
0

N(u)(t− u)2du are

nondecreasing with respect to t.
Set A = A(x, y) the linear operator A = F′

(
x+y

2

)
+ G(x, y) with x, y ∈ B(x, r). Then, by

Inequalities (9) and (10), we get:

‖I − H′(x∗)−1 A‖ = ‖H′(x∗)−1(H′(x∗)− A)‖
= ‖H′(x∗)−1

[
F′(x∗) + G(x∗, x∗)− F′

(
x+y

2

)
− G(x, y)

]
‖

≤
ρ(

x+y
2 )∫

0
L0(u)du +

ρ(x)+ρ(y)∫
0

M0(u)du

It follows that from the definition of r

r∫
0

L0(u)du +

2r∫
0

M0(u)du = 1− 1
8r

r∫
0

N(u)(r− u)2du−
3r/2∫
0

L(u)du−
3r∫

0

M(u)du < 1.

In view of the identity

‖A−1H′(x∗)‖ = ‖I −
(

I −
[

H′(x∗)−1 A
])−1

‖

and the Banach perturbation lemma [13], A−1 exists, and:

‖A−1H′(x∗)‖ ≤

1−
ρ(

x+y
2 )∫

0

L0(u)du−
ρ(x)+ρ(y)∫

0

M0(u)du


−1

Let us now suppose that xk ∈ B(x∗, r1). Set Ak = A(xk, yk). Then Ak is invertible and, according
to (6), we can write:

xk+1 − x∗ = xk − x∗ − A−1
k (F(xk) + G(xk)− F(x∗)− G(x∗))

= −A−1
k

[
F(xk) + G(xk)− F(x∗)− G(x∗)−

(
F′
(

xk+yk
2

)
+ G(xk, yk)

)
(xk − x∗)

]
= A−1

k H′(x∗)
{

H′(x∗)−1
[

F′
(

xk+yk
2

)
(xk − x∗)− F(xk) + F(x∗)

]
+H′(x∗)−1[G(xk, x∗)− G(xk, yk)](xk − x∗)

}
= A−1

k H′(x∗)
{

H′(x∗)−1
[

F′
(

xk+x∗
2

)
(xk − x∗)− F(xk) + F(x∗)

]
+H′(x∗)−1

[
F′
(

xk+yk
2

)
− F′

(
xk+x∗

2

)]
(xk − x∗)

+H′(x∗)−1[G(xk, x∗)− G(xk, yk)](xk − x∗)
}

.

(26)
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Let us write down the identity [29] (p. 336) (lemma 1) for the value ω = 1
2 :

F(x)− F(y)− F′
(

x+y
2

)
(x− y)

= 1
4

1∫
0
(1− t)

[
F′′
(

x+y
2 + t

2 (x− y)
)
− F′′

(
x+y

2 + t
2 (y− x)

)]
(x− y)(x− y)dt.

Letting in this equality x = x∗, y = x, we have in turn that:

‖H′(x∗)−1
[

F(x∗)− F(xk)− F′
(

xk+x∗
2

)
(x∗ − xk)

]
‖

= 1
4‖

1∫
0
(1− t)H′(x∗)−1

[
F′′
(

xk+x∗
2 + t

2 (x∗ − xk)
)
− F′′

(
xk+x∗

2 + t
2 (xk − x∗)

)
×(x∗ − xk)(x∗ − xk)]dt‖ ≤ 1

4

1∫
0
(1− t)

t‖xk−x∗‖∫
0

N(u)du ‖xk − x∗‖2dt

= 1
8

‖xk−x∗‖∫
0

(
1− u

‖xk−x∗‖

)
N(u)

(
1− u

‖xk−x∗‖

)
du‖xk − x∗‖2

= 1
8

ρ(xk)∫
0

N(u)(ρ(xk)− u)2du

Moreover, we have

‖H′(x∗)−1
[

F′
(

xk+yk
2

)
− F′

(
xk+x∗

2

)]
‖ ≤

ρ(yk)/2∫
0

L(u)du

‖H′(x∗)−1[G(xk, x∗)− G(xk, yk)] (xk − x∗)‖ ≤
ρ(yk)∫

0
M(u)du‖xk − x∗‖

Then, according to Lemmas 1–3, taking into account the latter inequalities, we obtain:

‖xk+1 − x∗‖ ≤‖A−1
k H′(x∗)‖

{
‖H′(x∗)−1

[
F′
(

xk+x∗
2

)
(xk − x∗)− F(xk) + F(x∗)

]
‖

+‖H′(x∗)−1
[

F′
(

xk+yk
2

)
− F′

(
xk+x∗

2

)]
(xk − x∗)‖

+
∥∥∥H′(x∗)−1[G(xk, x∗)− G(xk, yk)](xk − x∗)

∥∥∥}
≤ ‖A−1

k H′(x∗)‖
{

1
4

1∫
0
(1− t)‖H′(x∗)−1

[
F′′
(

xk+x∗
2 + t

2 (xk − x∗)
)

−F′′
(

xk+x∗
2 + t

2 (x∗ − xk)
)]

(xk − x∗)(xk − x∗)‖dt

+‖H′(x∗)−1
[

F′
(

xk+yk
2

)
− F′

(
xk+x∗

2

)]
(xk − x∗)‖

+‖H′(x∗)−1[G(xk, x∗)− G(xk, yk)](xk − x∗)‖
}

≤ ‖A−1
k H′(x∗)‖

{
1
8

ρ(xk)∫
0

N(u)(ρ(xk)− u)2du

+
ρ(yk)/2∫

0
L(u)duρ(xk) +

ρ(yk)∫
0

M(u)duρ(xk)

}
.
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Therefore

‖xk+1 − x∗‖ ≤ Qk

{
1

8ρ(xk)
3

ρ(xk)∫
0

N(u)(ρ(xk)− u)2duρ(xk)
3

+ 2
ρ(yk)

ρ(yk)/2∫
0

L(u)du ρ(xk)ρ(yk)/2 + 1
ρ(yk)

ρ(yk)∫
0

M(u)du ρ(xk)ρ(yk)

}

≤ Q0

{
1

8ρ(x0)
3

ρ(x0)∫
0

N(u)(ρ(x0)− u)2duρ(xk)
3

+ 2
ρ(y0)

ρ(y0)/2∫
0

L(u)du ρ(xk)ρ(yk)/2 + 1
ρ(y0)

ρ(y0)∫
0

M(u)du ρ(xk)ρ(yk)

}
≤ Jρ(xk)

3 + Cρ(xk)ρ(yk) <
(

Jr2
0 + Cr1

)
ρ(xk) = ρ(xk) < r0

(27)

where Qk =

1−
ρ(

xk+yk
2 )∫

0
L0(u)du −

ρ(xk)+ρ(yk)∫
0

M0(u)du

−1

.

Analogously [19]:

‖yk+1 − x∗‖ ≤ Qk

{
1
8

ρ(xk+1)∫
0

N(u)(ρ(xk+1)− u)2du +
zk/2∫
0

L(u)du ρ(xk+1) +
zk∫
0

M(u)du ρ(xk+1)

}
≤ Jρ(xk+1)

3 + E(ρ(xk) + ρ(yk) + ρ(xk+1))ρ(xk+1)

<
[

Jr2
0 + E(2r0 + r1)

]
ρ(xk+1) =

r1
r0

ρ(xk+1) < r1

(28)

where zk = ρ(xk) + ρ(yk) + ρ(xk+1).
By Inequality (27), sequence {‖xk − x∗‖} is convergent monotonically to some a, 0 ≤ a < r0.

From Inequality (27) comes a ≤ Ja3 + Car1. We arrive at a contradiction for a 6= 0:

1 ≤ Ja2 + Cr1 < Jr2
0 + Cr1 = 1

Hence, we get: lim
k→∞

xk = x∗ = lim
k→∞

yk.

We set ak = ρ(xk), bk = ρ(yk), k = 0, 1, 2, . . .. From Inequalities (27) and (28), we get:

ak+1 ≤ Ja3
k + Cakbk, k = 0, 1, 2, . . . ,

bk+1 ≤ ak+1min
{

r1
r0

, Ja2
k+1 + E(ak + ak+1 + bk)

}
≤ ak+1min

{
r1
r0

, (2E + Jak)ak + Ebk

}
≤ ak+1min

{
r1
r0

,
(

2E + Jr0 + E r1
r0

)
ak

}
≤
(

Jr0 + E
(

2 + r1
r0

))
ak+1ak

(29)

≤ ak+1min
{

r1

r0
,
(

2E + Jr0 + E
r1

r0

)
ak

}
≤
(

Jr0 + E
(

2 +
r1

r0

))
ak+1ak (30)

From the Inequalities (29) and (30) for large enough k and some positive constant C1, it follows
that ak+1 ≤ C1a2

k ak−1, which leads to the ρ2 − 2ρ− 1 = 0, with positive root ρ∗ = 1 +
√

2. �

4. The Uniqueness Ball for the Solution of Equations

The uniqueness ball for the solution is defined in the following theorem.
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Theorem 2. Suppose that H(x∗) ≡ F(x∗) + G(x∗) = 0, F′ is continuous in B(x∗, r),H′(x∗)−1 exists,
F′ satisfies the center-Lipschitz condition with L0 average:

‖H′(x∗)−1(F′(x)− F′(x∗)
)
‖ ≤

‖x−x∗‖∫
0

L0(u)du, ∀x, y ∈ B(x∗, r) (31)

the divided difference G(x, y) satisfies the center-Lipschitz condition with M0 average:

‖H′(x∗)−1(G(x, y)− G(x∗, x∗))‖ ≤
‖x−x∗‖+‖y−x∗‖∫

0

M0(u)du, ∀x, y ∈ B(x∗, r) (32)

Suppose r satisfies

1
r

r∫
0

(r− u)L0(u)du +

r∫
0

M0(u)du ≤ 1. (33)

Then the equation H(x) = 0 has a unique solution x∗ in B(x∗, r).

Proof. Pick x0 ∈ B(x∗, r) arbitrarily. Then, by the iteration:

xk+1 = xk − H′(x∗)−1(F(xk) + G(xk)), k = 0, 1, 2, . . . , (34)

we can write

x1 − x∗ = x0 − x∗ − H′(x∗)−1(F(x0) + G(x0))

= H′(x∗)−1[H′(x∗)(x0 − x∗)− F(x0) + F(x∗)− G(x0) + G(x∗)] =
= H′(x∗)−1[F′(x∗)(x0 − x∗)− F(x0) + F(x∗) + G(x∗, x∗)(x0 − x∗)− G(x0) + G(x∗)]
= H′(x∗)−1{F′(x∗)(x0 − x∗)− F(x0) + F(x∗) + [G(x∗, x∗)− G(x0, x∗)](x0 − x∗)}

Let us estimate the rate of expression as H′(x∗)−1{F′(x∗)(x0 − x∗)− F(x0) + F(x∗)},

‖H′(x∗)−1{F′(x∗)(x0 − x∗)− F(x0) + F(x∗)}‖

≤ ‖
1∫

0
H′(x∗)−1{F′(x∗ + t(x0 − x∗))− F′(x∗)}(x0 − x∗)dt‖

≤
1∫

0

t‖x0−x∗‖∫
0

L0(u)du ‖x0 − x∗‖dt

≤
‖x0−x∗‖∫

0

(
1− u

‖x0−x∗‖

)
L0(u)du‖x0 − x∗‖

=
ρ(x0)∫

0
(ρ(x0)− u)L0(u)du.

Then:

‖x1 − x∗‖ ≤

 1
ρ(x0)

ρ(x0)∫
0

(ρ(x0)− u)L0(u)du+

ρ(x0)∫
0

M0(u)du

‖x0 − x∗‖ = q0‖x0 − x∗‖, (35)

where:

q0 = 1
ρ(x0)

ρ(x0)∫
0

(ρ(x0)− u)L0(u)du+
ρ(x0)∫

0
M0(u)du

< 1
r

r∫
0
(r− u)L0(u)du+

r∫
0

M0(u)du ≤ 1.
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According to Inequality (35):

‖x1 − x∗‖ ≤ q0‖x0 − x∗‖.

Thus, the iteration (34) can be continued infinitely, and:

‖xk − x∗‖ ≤ qk
0‖x0 − x∗‖, k = 1, 2, . . . .

Therefore, lim
n→∞

xk = x∗. However, if H(x0) = 0, then from Equality (34), xk = x0. Therefore, from

this follows x0 = x∗. �

Let us denote that having set in Equation (1) G(x) ≡ 0, from Theorem 1 we obtain Theorem 1 from
Reference [29], and from Theorems 2–4.1 with Reference [28] for Newton’s method and having set in
Equation (1) F(x) ≡ 0, we obtain from Theorem 1 a corresponding Theorem 1 from Reference [10] for
method (2), but with more precise and obvious estimations. With Lipschitz constants, we obtain the
corresponding theorems from References [18,29–31].

Remark 2. If L0 = L = L1, M0 = M = M1, and N = N1, then our results reduce to the ones in
Reference [19]. Otherwise, i.e., if the inequalities in (20) or (21) or (22) are strict, then the following advantages
are available: larger convergence ball, tighter estimates on ‖xk − x∗‖, and better information regarding the
location of the solution since all new constants and functions are more precise (see also the numerical example).
Let us look for the corresponding Inequality (33) given in Reference [19], Inequality (23):

1
r

r∫
0

(r− u)L1(u)du +

r∫
0

M1(u)du ≤ 1. (36)

Then, it follows from Inequalities (33) and (36) that the new radius r is larger than the one in
Reference [19] provided (20) or (22) hold as strict inequalities. The advantages are obtained under the
same effort as in Reference [19]. This is because finding L1, M1, N1 requires finding L0, L, M, and N as
special cases.

Remark 3. In our earlier works [17,18], we reported the results of numerical experiments for solving
Equation (1).

5. Numerical Examples

In first example we test the local convergence hypotheses and show that the new radius of
convergence the is larger than the one in Reference [19]. The second example is used to show the
superiority of our method (6) over other methods using the similar information.

Example 1. Let X = Y = R3, Ω = S(v∗, 1), v∗ = (0, 0, 0)T, and G = 0 on Ω.
Define F on Ω by F(v) = (ev1 − 1, e−1

2 v2
2 + v2, v3)

T
for v = (v1, v2, v3)

T . Then we have:

F′(v) =

 ev1 0 0
0 (e− 1)v2 + 1 0
0 0 1

,
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so L0(u) = (e − 1)u, s = 1
e−1 , M0(u) = M(u) = M1(u) = 0, N(u) = L(u) = e

1
e−1 u, and N1(u) =

L1(u) = eu. Then, using Inequality (23), rnew = 0.614, and compared to rold = 0.475 using Inequality (23)
again but for N → N1 , L→ L1 , M→ M1 , L0 → L1 , and M0 → M1 , we conclude that:

rold < rnew

Example 2. Let X = Y = R3:

H1(v) = v3
2(1− v2)− v1v2 +

∣∣v2 − v3
2
∣∣ = 0,

H2(v) = v3
2(v1

3 − v1)− v2
2 +

∣∣3v2
2 − v3

2 + 1
∣∣ = 0,

H3(v) = 6v1v2
3 + v2

2v3
2 − v1v2

2v3 + |v1 + v3 − v2| = 0,
v∗ = (−1; 2; 3).

(37)

Define
G1(v) =

∣∣v2 − v3
2
∣∣,

G2(v) =
∣∣3v2

2 − v3
2 + 1

∣∣,
G3(v) = |v1 + v3 − v2|.

Let us denote x = v. We choose the initial approximation x0 = (−2; 3; 5)p. An additional
approximation is x−1 = y0 = x0 + 0.0001. We performed the calculations to fulfill the conditions
‖xk+1 − xk‖∞ ≤ ε; ‖H(xk+1)‖ ≤ ε.

To solve the System (37) we compared methods (3), (4), (6), and the secant method:

xk+1 = xk − (F(xk, xk−1) + G(xk, xk−1))
−1(F(xk) + G(xk)), k = 0, 1, 2, . . . (38)

The computations were performed using Matlab R2010a. The results of calculations are shown in
Table 1.

Table 1. Numbers of iterations for solving system of Equation (37).

p ε
Method

(3) (4) (38) (6)

1
10−5 85 7 10 7
10−15 266 10 12 8

10
10−5 102 110 25 14
10−15 284 20 27 16

100
10−5 110 28 39 23
10−15 292 30 41 24

As can be seen from column (6) of Table 1, the number of iterations for p = 1, 10, 100 and
ε = 10−5, 10−15 was smaller than the corresponding one of the other methods. The presented results
show the high efficiency of the proposed method (6).

6. Conclusions

We conducted an improved local convergence analysis of two-step solvers for solving nonlinear
equations. To study the method we used a center and a restricted radius Lipshchitz conditions to
obtain a larger radius of convergence and tighter error estimates, and under the same computational
effort. The uniqueness ball of the solution was established. Our results have the following advantages
over earlier works: (1) larger convergence region, leading to more initial points; (2) tighter upper
bound estimates on ‖xk+1 − x∗‖, as well as ‖xk − x∗‖, which means that fewer iterations are needed
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to arrive at a desired error tolerance; and (3) the information on the location of the solution is at least
as precise. In partial cases, the obtained results of local convergence contain the results obtained in the
works of other authors. Conducted numerical calculations confirm the theoretical results.
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