Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials
Abstract
1. Introduction
2. Degenerate Bernstein Polynomials and Operators
3. Degenerate Euler Polynomials Associated with Degenerate Bernstein Polynomials
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kurt, V. Some relation between the Bernstein polynomials and second kind Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23, 43–48. [Google Scholar]
- Kim, T. Identities on the weighted q–Euler numbers and q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 7–12. [Google Scholar] [CrossRef]
- Kim, T. A note on q–Bernstein polynomials. Russ. J. Math. Phys. 2011, 18, 73–82. [Google Scholar] [CrossRef]
- Kim, T. A study on the q–Euler numbers and the fermionic q–integral of the product of several type q–Bernstein polynomials on ℤp. Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23, 5–11. [Google Scholar]
- Kim, T.; Bayad, A.; Kim, Y.H. A study on the p–adic q–integral representation on ℤp associated with the weighted q–Bernstein and q-Bernoulli polynomials. J. Inequal. Appl. 2011, 2011, 513821. [Google Scholar] [CrossRef]
- Kim, T.; Choi, J.; Kim, Y.-H. On the k–dimensional generalization of q–Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14, 199–207. [Google Scholar]
- Kim, T.; Choi, J.; Kim, Y.H. Some identities on the q–Bernstein polynomials, q–Stirling numbers and q–Bernoulli numbers. Adv. Stud. Contemp. Math. (Kyungshang) 2010, 20, 335–341. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate Bernstein Polynomials. RACSAM 2018. [Google Scholar] [CrossRef]
- Kim, T.; Lee, B.; Choi, J.; Kim, Y.H.; Rim, S.H. On the q–Euler numbers and weighted q–Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2011, 21, 13–18. [Google Scholar]
- Rim, S.-H.; Joung, J.; Jin, J.-H.; Lee, S.-J. A note on the weighted Carlitz’s type q=Euler numbers and q-Bernstein polynomials. Proc. Jangjeon Math. Soc. 2012, 15, 195–201. [Google Scholar]
- Simsek, Y. Identities and relations related to combinatorial numbers and polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 127–135. [Google Scholar]
- Siddiqui, M.A.; Agarwal, R.R.; Gupta, N. On a class of modified new Bernstein operators. Adv. Stud. Contemp. Math. (Kyungshang) 2014, 24, 97–107. [Google Scholar]
- Costabile, F.; Gualtieri, M.; Serra, S. Asymptotic expansion and extrapolation for Bernstein polynomials with applications. BIT Numer. Math. 1996, 36, 676–687. [Google Scholar] [CrossRef]
- Khosravian, H.; Dehghan, M.; Eslahchi, M.R. A new approach to improve the order of approximation of the Bernstein operators: Theory and applications. Numer. Algorithms 2018, 77, 111–150. [Google Scholar] [CrossRef]
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 1979, 15, 51–88. [Google Scholar]
- Carlitz, L. A degenerate Staudt-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
- Bayad, A.; Kim, T.; Lee, B.; Rim, S.-H. Some identities on Bernstein polynomials associated with q-Euler polynomials. Abstr. Appl. Anal. 2011, 2011, 294715. [Google Scholar] [CrossRef]
- Bernstein, S. Demonstration du theoreme de Weierstrass basee sur le calcul des probabilites. Commun. Soc. Math. Kharkow 1912, 13, 1–2. [Google Scholar]
- Kim, T.; Kim, D.S. Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind. Sci. China Math. 2018. [Google Scholar] [CrossRef]
- Araci, S.; Acikgoz, M. A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 2012, 22, 399–406. [Google Scholar]
- Ryoo, C.S. Some identities of the twisted q-Euler numbers and polynomials associated with q-Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14, 239–248. [Google Scholar]
- Bayad, A.; Kim, T. Identities involving values of Bernstein, q–Bernoulli, and q–Euler polynomials. Russ. J. Math. Phys. 2011, 18, 133–143. [Google Scholar] [CrossRef]
- Kim, T. Some identities on the q-integral representation of the product of several q-Bernstein-type polynomials. Abstr. Appl. Anal. 2011, 2011, 634675. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A note on degenerate Eulerian numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2017, 27, 431–440. [Google Scholar]
- Khan, W.A.; Ahmad, M. Partially degenerate poly-Bernoulli polynomials associated with Hermite polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 487–496. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 2017, 24, 241–248. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, D.S. Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials. Mathematics 2019, 7, 47. https://doi.org/10.3390/math7010047
Kim T, Kim DS. Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials. Mathematics. 2019; 7(1):47. https://doi.org/10.3390/math7010047
Chicago/Turabian StyleKim, Taekyun, and Dae San Kim. 2019. "Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials" Mathematics 7, no. 1: 47. https://doi.org/10.3390/math7010047
APA StyleKim, T., & Kim, D. S. (2019). Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials. Mathematics, 7(1), 47. https://doi.org/10.3390/math7010047