Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices
Abstract
:1. Introduction
2. Definitions and Notations
3. Methods
Algorithm 1 ZeroDivisorGraph () |
1: if 2: 3: for to 4: 5: for to q 6: 7: if OR 8: 9: createGraph () |
Algorithm 2 createGraph () |
1: for to 2: 3: for to q 4: 5: if AND 6: 7: if OR 8: 9: 10: 11: else 12: 13: 14: 15: if OR 16: 17: 18: 19: else 20: 21: 22: 23: if mod AND mod AND 24: 25: return |
4. Main Results
- .
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmad, A. On the degree based topological indices of benzene ring embedded in P-type-surface in 2D network. Hacet. J. Math. Stat. 2018, 47, 9–18. [Google Scholar] [CrossRef]
- Bac̆a, M.; Horvràthovà, J.; Mokrišovà, M.; Suhànyiovà, A. On topological indices of fullerenes. Appl. Math. Comput. 2015, 251, 154–161. [Google Scholar]
- Baig, A.Q.; Imran, M.; Ali, H.; Rehman, S.U. Computing topological polynomial of certain nanostructures. J. Optoelectron. Adv. Mater. 2015, 17, 877–883. [Google Scholar]
- Estrada, E. Atom-Bond Connectivity and the Energetic of Branched Alkanes. Chem. Phys. Lett. 2008, 463, 422–425. [Google Scholar] [CrossRef]
- Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. Indian J. Chem. 1998, 37A, 849–855. [Google Scholar]
- Gravovac, A.; Ghorbani, M.; Hosseinzadeh, M.A. Computing fifth geometric-arithmatic index ABC4 index of nanostar dendrimers. Optoelectron. Adv. Mater. Rapid Commun. 2010, 4, 1419–1422. [Google Scholar]
- Hayat, S.; Imran, M. Computation of topological indices of certain networks. Appl. Math. Comput. 2014, 240, 213–228. [Google Scholar] [CrossRef]
- Nadeem, M.F.; Zafar, S.; Zahid, Z. On certain topological indices of the line graph of subdivision graphs. Appl. Math. Comput. 2015, 271, 790–794. [Google Scholar] [CrossRef]
- Nadeem, M.F.; Zafar, S.; Zahid, Z. On topological properties of the line graphs of subdivision graphs of certain nanostructures. Appl. Math. Comput. 2016, 273, 125–130. [Google Scholar] [CrossRef]
- Sharma, V.; Goswami, R.; Madan, A.K. Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure activity studies. J. Chem. Inf. Comput. Sci. 1997, 37, 273–282. [Google Scholar] [CrossRef]
- Dureja, H.; Madan, A.K. Topochemical models for prediction of cyclin-dependent kinase 2 inhibitory activity of indole-2-ones. J. Mol. Model. 2005, 11, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Ilic, A.; Gutman, I. Eccentric-connectivity index of chemical trees. MATCH Commun. Math. Comput. Chem. 2011, 65, 731–744. [Google Scholar]
- Kumar, N.; Madan, A.K. Application of graph theory: Prediction of cytosolic phospholipase A(2) inhibitory activity of propan-2-ones. J. Math. Chem. 2006, 39, 511–521. [Google Scholar] [CrossRef]
- Zhou, B. On eccentric-connectivity index. MATCH Commun. Math. Comput. Chem. 2010, 63, 181–198. [Google Scholar]
- Farooq, R.; Malik, M.A. On some eccentricity based topological indices of nanostar dendrimers. Optoelectron. Adv. Mater. Rapid Commun. 2015, 9, 842–849. [Google Scholar]
- Li, X.; Zhao, H. Trees with the first three smallest and largest generalized topological indices. MATCH Commun. Math. Comput. Chem. 2004, 50, 57–62. [Google Scholar]
- Ghorbani, M.; Hosseinzadeh, M.A. A new version of Zagreb indices. Filomat 2012, 26, 93–100. [Google Scholar] [CrossRef]
- Alaeiyan, M.; Asadpour, J.; Mojarad, R. A numerical method for MEC polynomial and MEC index of one pentagonal carbon nanocones. Fuller. Nanotub. Carbon Nanostruct. 2013, 21, 825–835. [Google Scholar] [CrossRef]
- Ashrafi, A.R.; Ghorbani, M.; Hossein-Zadeh, M.A. The eccentric-connectivity polynomial of some graph operations. Serdica J. Comput. 2011, 5, 101–116. [Google Scholar]
- Gupta, S.; Singh, M.; Madan, A.K. Connective eccentricity index: A novel topological descriptor for predicting biological activity. J. Mol. Graph. Model. 2000, 18, 18–25. [Google Scholar] [CrossRef]
- De, N. Relationship between augmented eccentric-connectivity index and some other graph invariants. Int. J. Adv. Math. 2013, 1, 26–32. [Google Scholar] [CrossRef]
- Doślić, T.; Saheli, M. Augmented eccentric-connectivity index. Miskolc Math. Notes 2011, 12, 149–157. [Google Scholar] [CrossRef]
- Ediz, S. On the Ediz eccentric connectivity index of a graph. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 1263–1264. [Google Scholar]
- Ediz, S. Reverse eccentric connectivity index. Optoelectron. Adv. Mater. Rapid Commun. 2012, 6, 664–667. [Google Scholar]
- Beck, I. Coloring of a commutative ring. J. Algebra 1988, 116, 208–226. [Google Scholar] [CrossRef]
- Anderson, D.F.; Livingston, P.S. The Zero-divisor Graph of Commutative Ring. J. Algebra 1999, 217, 434–447. [Google Scholar] [CrossRef]
- Anderson, D.F.; Badawi, A. On the Zero-Divisor Graph of a Ring. Commun. Algebra 2008, 36, 3073–3092. [Google Scholar] [CrossRef]
- Akbari, S.; Mohammadian, A. On the zero-divisor graph of a commutative ring. J. Algebra 2004, 274, 847–855. [Google Scholar] [CrossRef]
- Anderson, D.F.; Mulay, S.B. On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 2008, 210, 543–550. [Google Scholar] [CrossRef]
- Asir, T.; Tamizh Chelvam, T. On the total graph and its complement of a commutative ring. Commun. Algebra 2013, 41, 3820–3835. [Google Scholar] [CrossRef]
- Samei, K. The zero-divisor graph of a reduced ring. J. Pure Appl. Algebra 2007, 209, 813–821. [Google Scholar] [CrossRef]
- Tamizh Chelvam, T.; Asir, T. A note on total graph of . J. Discret. Math. Sci. Cryptogr. 2011, 14, 1–7. [Google Scholar] [CrossRef]
- Belov, A.Y. Linear Recurrence Equations on a Tree. Math. Notes 2005, 78, 603–609. [Google Scholar] [CrossRef]
- Belov, A.Y.; Borisenko, V.V.; Latyshev, V.N. Monomial algebras. J. Math. Sci. 1997, 87, 3463–3575. [Google Scholar] [CrossRef]
- Ahmad, A.; Bac̆a, M.; Semaničová-Feňovčíková, A. Computation of vertex based eccentric topological indices of zero divisor graph of . 2018; submitted. [Google Scholar]
Representatives of Vertices | Degree | Eccentricity | Frequency |
---|---|---|---|
2 | |||
2 | |||
2 | |||
3 | |||
3 | |||
3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elahi, K.; Ahmad, A.; Hasni, R. Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices. Mathematics 2018, 6, 301. https://doi.org/10.3390/math6120301
Elahi K, Ahmad A, Hasni R. Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices. Mathematics. 2018; 6(12):301. https://doi.org/10.3390/math6120301
Chicago/Turabian StyleElahi, Kashif, Ali Ahmad, and Roslan Hasni. 2018. "Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices" Mathematics 6, no. 12: 301. https://doi.org/10.3390/math6120301
APA StyleElahi, K., Ahmad, A., & Hasni, R. (2018). Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices. Mathematics, 6(12), 301. https://doi.org/10.3390/math6120301