Recurrence Relations for Orthogonal Polynomials on Triangular Domains
Abstract
:1. Introduction
2. Univariate Legendre and Bernstein Polynomials
3. Bivariate Orthogonal Polynomials
4. Bivariate Polynomials on Triangular Domains
5. Legendre-Weighted Orthogonal Polynomials
6. Recurrence Relation
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Szegö, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society: Providence, RI, USA, 1975. [Google Scholar]
- Dunkl, C.F.; Xu, Y. Orthogonal Polynomials of Several Variables (Encyclopedia of Mathematics and Its Applications); Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Suetin, P.K. Orthogonal Polynomials in Two Variables; Gordon and Breach: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Sauer, T. The genuine Bernstein-Durrmeyer operator on a simplex. Results Math. 1994, 26, 99–130. [Google Scholar] [CrossRef]
- Farouki, R.T.; Goodman, T.N.T.; Sauer, T. Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains. Comput. Aided Geom. Des. 2003, 20, 209–230. [Google Scholar] [CrossRef]
- Lewanowicz, S.; Wozńy, P. Connections between two-variable Bernstein and Jacobi polynomials on the triangle. J. Comput. Appl. Math. 2006, 197, 520–533. [Google Scholar] [CrossRef]
- Area, I.; Godoy, E.; Ronveaux, A.; Zarzo, A. Bivariate second-order linear partial differential equations and orthogonal polynomial solutions. J. Math. Anal. Appl. 2012, 387, 1188–1208. [Google Scholar] [CrossRef]
- Höllig, K.; Hörner, J. Approximation and Modeling with B-Splines; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2013. [Google Scholar]
- Khan, S.; Al-Gonah, A.; Yasmin, G. Generalized and mixed type Gegenbauer polynomials. J. Math. Anal. Appl. 2012, 390, 197–207. [Google Scholar] [CrossRef]
- Pathan, M.; Khan, W. A New class of generalized polynomials associated with Hermite and Euler polynomials. Mediterr. J. Math. 2015. [Google Scholar] [CrossRef]
- Cooper, S.; Waldron, S. The diagonalisation of multivariate Bernstein operator. J. Approx. Theory 2002, 117, 103–131. [Google Scholar] [CrossRef]
- Derriennic, M. On multivariate approximation by Bernstein-type polynomials. J. Approx. Theory 1985, 45, 155–166. [Google Scholar] [CrossRef]
- Waldron, S. A generalised beta integral and the limit of the Bernstein-Durrmeyer operator with Jacobi weights. J. Approx. Theory 2003, 122, 141–150. [Google Scholar] [CrossRef]
- Rababah, A. Distance for degree raising and reduction of triangular Bézier surfaces. J. Comput. Appl. Math. 2003, 158, 233–241. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rababah, A. Recurrence Relations for Orthogonal Polynomials on Triangular Domains. Mathematics 2016, 4, 25. https://doi.org/10.3390/math4020025
Rababah A. Recurrence Relations for Orthogonal Polynomials on Triangular Domains. Mathematics. 2016; 4(2):25. https://doi.org/10.3390/math4020025
Chicago/Turabian StyleRababah, Abedallah. 2016. "Recurrence Relations for Orthogonal Polynomials on Triangular Domains" Mathematics 4, no. 2: 25. https://doi.org/10.3390/math4020025
APA StyleRababah, A. (2016). Recurrence Relations for Orthogonal Polynomials on Triangular Domains. Mathematics, 4(2), 25. https://doi.org/10.3390/math4020025