Reformulated First Zagreb Index of Some Graph Operations
Abstract
:1. Introduction
2. Main Results
2.1. The Join of Graphs
2.2. The Cartesian Product of Graphs
2.3. Composition
- (i)
- (ii)
- .
2.4. Splice of Graphs
2.5. Link of Graphs
2.6. Corona Product of Graphs
- (i)
- (ii)
- (ii)
- , for
- (iii)
- , for and .
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
- Xu, K.; Tang, K.; Liu, H.; Wang, J. The Zagreb indices of bipartite graphs with more edges. J. Appl. Math. Inf. 2015, 33, 365–377. [Google Scholar]
- Das, K.C.; Xu, K.; Nam, J. On Zagreb indices of graphs. Front. Math. China 2015, 10, 567–582. [Google Scholar] [CrossRef]
- Milićević, A.; Nikolić, S.; Trinajstić, N. On reformulated Zagreb indices. Mol. Divers. 2004, 8, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Trinajstić, N. Some properties of the reformulated Zagreb indices. J. Math. Chem. 2010, 48, 714–719. [Google Scholar] [CrossRef]
- Ilić, A.; Zhou, B. On reformulated Zagreb indices. Discret. Appl. Math. 2012, 160, 204–209. [Google Scholar] [CrossRef]
- Su, G.; Xiong, L.; Xu, L.; Ma, B. On the maximum and minimum first reformulated Zagreb index with connectivity at most k. Filomat 2011, 2, 75–83. [Google Scholar] [CrossRef]
- De, N. Some Bounds of Reformulated Zagreb Indices. Appl. Math. Sci. 2012, 6, 5005–5012. [Google Scholar]
- De, N. Reformulated Zagreb indices of Dendrimers. Math. Aeterna 2013, 3, 133–138. [Google Scholar]
- Ji, S.; Li, X.; Huo, B. On Reformulated Zagreb Indices with Respect to Acyclic, Unicyclic and Bicyclic Graphs. MATCH Commun. Math. Comput. Chem. 2014, 72, 723–732. [Google Scholar]
- Ji, S.; Li, X.; Qu, Y. On reformulated zagreb indices with respect to tricyclic graphs. http://arxiv.org/abs/1406.7169.
- Khalifeha, M.H.; Yousefi-Azaria, H.; Ashrafi, A.R. The first and second Zagreb indices of some graph operations. Discret. Appl. Math. 2009, 157, 804–811. [Google Scholar] [CrossRef]
- Ashrafi, A.R.; Doslic´, T.; Hamzeh, A. The Zagreb coindices of graph operations. Discret. Appl. Math. 2010, 158, 1571–1578. [Google Scholar] [CrossRef]
- Das, K.C.; Yurttas, A.; Togan, M.; Cevik, A.S.; Cangul, I.N. The multiplicative Zagreb indices of graph operations. J. Ineql. Appl. 2013, 2013. [Google Scholar] [CrossRef]
- Azari, M.; Iranmanesh, A. Computing the eccentric-distance sum for graph operations. Discret. Appl. Math. 2013, 161, 2827–2840. [Google Scholar] [CrossRef]
- De, N.; Pal, A.; Nayeem, S.M.A. On some bounds and exact formulae for connective eccentric indices of graphs under some graph operations. Int. J. Comb. 2014. [Google Scholar] [CrossRef]
- De, N.; Nayeem, S.M.A.; Pal, A. F-index of some graph operations. Personal communication, 2015. [Google Scholar]
- Azari, M. Sharp lower bounds on the Narumi-Katayama index of graph operations. Appl. Math. Comput. 2014, 239, 409–421. [Google Scholar] [CrossRef]
- Khalifeh, M.H.; Yousefi-Azari, H.; Ashrafi, A.R. The hyper-Wiener index of graph operations. Comput. Math. Appl. 2008, 56, 1402–1407. [Google Scholar] [CrossRef]
- Tavakoli, M.; Rahbarnia, F.; Ashrafi, A.R. Some new results on irregularity of graphs. J. Appl. Math. Inf. 2014, 32, 675–685. [Google Scholar] [CrossRef]
- Veylaki, M.; Nikmehr, M.J.; Tavallaee, H.A. The third and hyper-Zagreb coindices of some graph operations. J. Appl. Math. Comput. 2015. [Google Scholar] [CrossRef]
- De, N.; Nayeem, S.M.A.; Pal, A. Total eccentricity index of the generalized hierarchical product of graphs. Int. J. Appl. Comput. Math. 2014. [Google Scholar] [CrossRef]
- Dosli´, T. Splices, links and their degree weighted Wiener polynomials. Graph Theory Notes N. Y. 2005, 48, 47–55. [Google Scholar]
- Pattabiraman, K.; Kandan, P. Weighted PI index of corona product of graphs. Discret. Math. Algorithms Appl. 2014, 6. [Google Scholar] [CrossRef]
- Yarahmadi, Z.; Ashrafi, A.R. The Szeged, Vertex PI, first and second Zagreb Indices of corona Product of Graphs. Filomat 2012, 26, 467–472. [Google Scholar] [CrossRef]
- Alizadeh, Y.; Iranmanesh, A.; Dosli´, T.; Azari, M. The edge Wiener index of suspensions, bottlenecks, and thorny graphs. Glas. Mat. Ser. III 2014, 49, 1–12. [Google Scholar] [CrossRef]
- De, N. On eccentric connectivity index and polynomial of thorn graph. Appl. Math. 2012, 3, 931–934. [Google Scholar]
- De, N. Augmented eccentric connectivity index of some thorn graphs. Int. J. Appl. Math. Res. 2012, 1, 671–680. [Google Scholar] [CrossRef]
- De, N.; Pal, A.; Nayeem, S.M.A. Modified eccentric connectivity of generalized thorn graphs. Int. J. Comput. Math. 2014. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De, N.; Nayeem, S.M.A.; Pal, A. Reformulated First Zagreb Index of Some Graph Operations. Mathematics 2015, 3, 945-960. https://doi.org/10.3390/math3040945
De N, Nayeem SMA, Pal A. Reformulated First Zagreb Index of Some Graph Operations. Mathematics. 2015; 3(4):945-960. https://doi.org/10.3390/math3040945
Chicago/Turabian StyleDe, Nilanjan, Sk. Md. Abu Nayeem, and Anita Pal. 2015. "Reformulated First Zagreb Index of Some Graph Operations" Mathematics 3, no. 4: 945-960. https://doi.org/10.3390/math3040945
APA StyleDe, N., Nayeem, S. M. A., & Pal, A. (2015). Reformulated First Zagreb Index of Some Graph Operations. Mathematics, 3(4), 945-960. https://doi.org/10.3390/math3040945