Reproducing Kernel Hilbert Space vs. Frame Estimates
Abstract
:1. Introduction
2. An Explicit Isomorphism
- Remark 1. 1. Since the statement of our result entails (inverse Gramian, it is actually a pseudo-inverse, see below), we will add a few comments about this point. It is known to specialists in frame theory, but to make the presentation self-contained we add a lemma giving equivalent properties and conditions for .
- 2.
- The Gramian of a frame is invertible if and only if the frame is a Riesz basis.
- 3.
- By definition a frame refers to a fixed Hilbert space, say , and then a system of vectors in satisfying an axiomatic a priori estimate, see (11). But because of applications to stochastic processes (see Section 3) it is natural to consider frames in some specified Hilbert space which in fact consists of function on some set, say Ω (given at the outset).
- 4.
- Our concern here is to make the connection between the initial Hilbert space (with frame vectors) and an associated reproducing kernel Hilbert space of functions on Ω. An application to the study of Gaussian processes is motivating our approach.
- (a) each is a function on Ω where Ω is a given set
- (c) , for all
3. Frames and Gaussian Processes
- (i)
- is indexed by the Schwartz-space of function φ on , i.e., , and for all we have
- (ii)
- Let the dual = the Schwartz space of all tempered distribution, then is defined on , by
- (iii)
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Arqub, O.A.; Al-Smadi, M.; Shawagfeh, N. Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 2013, 219, 8938–8948. [Google Scholar] [CrossRef]
- Alpay, D.; Jorgensen, P. Stochastic processes induced by singular operators. Numer. Funct. Anal. Optim. 2012, 33, 708–735. [Google Scholar] [CrossRef]
- Alpay, D.; Jorgensen, P.; Levanony, D. A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 2011, 261, 507–541. [Google Scholar] [CrossRef]
- Aronszajn, N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950, 68, 337–404. [Google Scholar] [CrossRef]
- Casazza, P.G.; Christensen, O. Frames containing a Riesz basis and preservation of this property under perturbations. SIAM J. Math. Anal. 1998, 29, 266–278, (electronic). [Google Scholar] [CrossRef]
- Casazza, P.G.; Kutyniok, G. Frames of Subspaces. In Wavelets, Frames and Operator Theory; Amer. Math. Soc.: Providence, RI, USA, 2004; Volume 345, pp. 87–113. [Google Scholar]
- Han, D.; Wu, J.; Larson, D.; Li, P.; Mohapatra, R.N. Dilation of dual frame pairs in Hilbert C*-modules. Results Math. 2013, 63, 241–250. [Google Scholar] [CrossRef]
- Jorgensen, P.E.T.; Song, M.-S. Entropy encoding, hilbert space, and karhunen-loève transforms. J. Math. Phys. 2007, 48. [Google Scholar] [CrossRef]
- Jorgensen, P.E.T.; Song, M.-S. An Extension of Wiener Integration with the Use of Operator Theory. J. Math. Phys. 2009, 50. [Google Scholar] [CrossRef]
- Kato, T. On the Hilbert matrix. Proc. Amer. Math. Soc. 1957, 8, 73–81. [Google Scholar] [CrossRef]
- Peter, D.L. Functional Analysis; Pure and Applied Mathematics (New York) Wiley-Interscience (John Wiley & Sons): New York, NY, USA, 2002. [Google Scholar]
- Nosedal-Sanchez, A.; Storlie, C.B.; Lee, T.C.M.; Christensen, R. Reproducing kernel Hilbert spaces for penalized regression: A tutorial. Am. Stat. 2012, 66, 50–60. [Google Scholar] [CrossRef]
- Rosenblum, M. On the Hilbert matrix. II. Proc. Am. Math. Soc. 1958, 9, 581–585. [Google Scholar]
- Taussky, O. A remark concerning the characteristic roots of the finite segments of the Hilbert matrix. Quart. J. Math. Oxford Ser. 1949, 20, 80–83. [Google Scholar] [CrossRef]
- Watanabe, S. Jacobi polynomials and associated reproducing kernel Hilbert spaces. J. Math. Anal. Appl. 2012, 389, 108–118. [Google Scholar] [CrossRef]
- Akira, Y. Inequalities for gram matrices and their applications to reproducing kernel Hilbert spaces. Taiwan. J. Math. 2013, 17, 427–430. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorgensen, P.E.T.; Song, M.-S. Reproducing Kernel Hilbert Space vs. Frame Estimates. Mathematics 2015, 3, 615-625. https://doi.org/10.3390/math3030615
Jorgensen PET, Song M-S. Reproducing Kernel Hilbert Space vs. Frame Estimates. Mathematics. 2015; 3(3):615-625. https://doi.org/10.3390/math3030615
Chicago/Turabian StyleJorgensen, Palle E. T., and Myung-Sin Song. 2015. "Reproducing Kernel Hilbert Space vs. Frame Estimates" Mathematics 3, no. 3: 615-625. https://doi.org/10.3390/math3030615
APA StyleJorgensen, P. E. T., & Song, M.-S. (2015). Reproducing Kernel Hilbert Space vs. Frame Estimates. Mathematics, 3(3), 615-625. https://doi.org/10.3390/math3030615