An Inverse Source Problem in a Variable-Order Time-Fractional Diffusion PDE
Abstract
1. Problem Formulation
Highlights and Added Value
2. Well Posedness
3. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caputo, M. Linear Models of Dissipation whose Q is almost Frequency Independent-II. Geophys. J. R. Astron. Soc. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Podlubný, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Mathematics in science and engineering; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Ding, W.; Patnaik, S.; Sidhardh, S.; Semperlotti, F. Applications of Distributed-Order Fractional Operators: A Review. Entropy 2021, 23, 110. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Coimbra, C.F.M. Mechanics with variable-order differential operators. Ann. Der Phys. 2003, 12, 692–703. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Chen, Y.Q. Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A Stat. Mech. Its Appl. 2009, 388, 4586–4592. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations, 1st ed.; SpringerBriefs in Applied Sciences and Technology; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190498. [Google Scholar] [CrossRef]
- Slodička, M. A semilinear diffusion PDE with variable order time-fractional Caputo derivative subject to homogeneous Dirichlet boundary conditions. Fract. Calc. Appl. Anal. 2025, 28, 38–75. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. General Fractional Calculus Operators of Distributed Order. Axioms 2023, 12, 1075. [Google Scholar] [CrossRef]
- Fedorov, V.E.; Filin, N.V. Linear equations with discretely distributed fractional derivative in Banach spaces. Tr. Instituta Mat. I Mekhaniki UrO RAN 2021, 27, 264–280. [Google Scholar]
- Fedorov, V.E.; Abdrakhmanova, A.A. Initial-Value Problem for Distributed-Order Equations with a Bounded Operator. J. Math. Sci. 2025, 287, 826–834. [Google Scholar] [CrossRef]
- Van Bockstal, K. Existence and uniqueness of a weak solution to a non-autonomous time-fractional diffusion equation (of distributed order). Appl. Math. Lett. 2020, 109, 106540. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, X.; Wang, H. A variably distributed-order time-fractional diffusion equation: Analysis and approximation. Comput. Methods Appl. Mech. Eng. 2020, 367, 113118. [Google Scholar] [CrossRef]
- Gajewski, H.; Gröger, K.; Zacharias, K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen; Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38; Akademie-Verlag: Berlin, Germany, 1974. [Google Scholar]
- Slodička, M. Some direct and inverse source problems in nonlinear evolutionary PDEs with Volterra operators. Inverse Probl. 2022, 38, 124001. [Google Scholar] [CrossRef]
- Sakamoto, K.; Yamamoto, M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar] [CrossRef]
- Evans, L.C. Partial Differential Equations; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1998; Volume 19. [Google Scholar]
- Isakov, V. Inverse Source Problems; Mathematical Surveys and Monographs, 34; American Mathematical Society (AMS): Providence, RI, USA, 1990. [Google Scholar]
- Prilepko, A.; Orlovsky, D.; Vasin, I. Methods for Solving Inverse Problems in Mathematical Physics; Monographs and textbooks in pure and applied mathematics; Marcel Dekker, Inc.: New York, NY, USA, 2000; Volume 222. [Google Scholar]
- Hasanov, A. Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach. J. Math. Anal. Appl. 2007, 330, 766–779. [Google Scholar] [CrossRef]
- Johansson, B.T.; Lesnic, D. A variational method for identifying a spacewise-dependent heat source. IMA J. Appl. Math. 2007, 72, 748–760. [Google Scholar] [CrossRef]
- Slodička, M.; Šišková, K. An inverse source problem in a semilinear time-fractional diffusion equation. Comput. Math. Appl. 2016, 72, 1655–1669. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Yamamoto, M. Inverse problems of determining sources of the fractional partial differential equations. Handb. Fract. Calc. Appl. 2019, 2, 411–430. [Google Scholar]
- Zheng, X.; Wang, H. Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal. 2020, 41, 1522–1545. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H. Analysis and discretization of a variable-order fractional wave equation. Commun. Nonlinear Sci. Numer. Simul. 2022, 104, 106047. [Google Scholar] [CrossRef]
- Kian, Y.; Slodička, M.; Soccorsi, E.; Van Bockstal, K. On time-fractional partial differential equations of time-dependent piecewise constant order. Math. Methods Appl. Sci. 2025, 48, 2354–2369. [Google Scholar] [CrossRef]
- Henry, D. Geometric Theory of Semilinear Parabolic Equations; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981; Volume 840. [Google Scholar]
- Chen, C.; Thomée, V.; Wahlbin, L. Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math. Comput. 1992, 58, 587–602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Slodička, M. An Inverse Source Problem in a Variable-Order Time-Fractional Diffusion PDE. Mathematics 2026, 14, 488. https://doi.org/10.3390/math14030488
Slodička M. An Inverse Source Problem in a Variable-Order Time-Fractional Diffusion PDE. Mathematics. 2026; 14(3):488. https://doi.org/10.3390/math14030488
Chicago/Turabian StyleSlodička, Marián. 2026. "An Inverse Source Problem in a Variable-Order Time-Fractional Diffusion PDE" Mathematics 14, no. 3: 488. https://doi.org/10.3390/math14030488
APA StyleSlodička, M. (2026). An Inverse Source Problem in a Variable-Order Time-Fractional Diffusion PDE. Mathematics, 14(3), 488. https://doi.org/10.3390/math14030488

