Next Article in Journal
Nonparametric Functional Least Absolute Relative Error Regression: Application to Econophysics
Previous Article in Journal
Robust Trajectory Tracking for Omnidirectional Mobile Robots with Input Time Delay: An ADRC Approach
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

The John–Nirenberg Theorems for Martingales on Variable Lorentz–Karamata Spaces

1
School of Mathematics and Statistics, Hunan University of Science and Technology, Xiangtan 411201, China
2
School of Mathematics and Statistics, Central South University, Changsha 410075, China
3
Department of Numerical Analysis, Eötvös L. University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary
*
Author to whom correspondence should be addressed.
Mathematics 2026, 14(2), 267; https://doi.org/10.3390/math14020267
Submission received: 17 December 2025 / Revised: 3 January 2026 / Accepted: 9 January 2026 / Published: 10 January 2026
(This article belongs to the Section C: Mathematical Analysis)

Abstract

Let E be a rearrangement-invariant Banach function space. Let P(Ω) denote the collection of all measurable variable exponents p(·):Ω(0,) such that 0<essinfwΩp(w)esssupwΩp(w)<. In this paper, with the help of a new atomic decomposition of the variable Hardy–Lorentz–Karamata space Hp(·),q,bM via (s,p(·),E)M-atoms, we characterize the dual space of Hp(·),q,bM for the two cases 0<q1 and 1<q, respectively. Using this, some new John–Nirenberg theorems associated with variable exponents are also established.
Keywords: variable Lorentz–Karamata space; rearrangement-invariant Banach function space; the John–Nirenberg theorem variable Lorentz–Karamata space; rearrangement-invariant Banach function space; the John–Nirenberg theorem

Share and Cite

MDPI and ACS Style

Hao, Z.; Li, M.; Tian, H.; Weisz, F. The John–Nirenberg Theorems for Martingales on Variable Lorentz–Karamata Spaces. Mathematics 2026, 14, 267. https://doi.org/10.3390/math14020267

AMA Style

Hao Z, Li M, Tian H, Weisz F. The John–Nirenberg Theorems for Martingales on Variable Lorentz–Karamata Spaces. Mathematics. 2026; 14(2):267. https://doi.org/10.3390/math14020267

Chicago/Turabian Style

Hao, Zhiwei, Mei Li, Hongli Tian, and Ferenc Weisz. 2026. "The John–Nirenberg Theorems for Martingales on Variable Lorentz–Karamata Spaces" Mathematics 14, no. 2: 267. https://doi.org/10.3390/math14020267

APA Style

Hao, Z., Li, M., Tian, H., & Weisz, F. (2026). The John–Nirenberg Theorems for Martingales on Variable Lorentz–Karamata Spaces. Mathematics, 14(2), 267. https://doi.org/10.3390/math14020267

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop