Research on Risk Contagion and Risk Early Warning of China’s Fintech and Banking Industry from the Perspective of Complex Networks
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Review
2.1.1. Risk Correlation Mechanism Between Fintech and Banking
2.1.2. Research on Risk Contagion Network
2.1.3. Systemic Risk Warning
2.2. Methodology Introduction and Data Description
Risk Contagion Network Model-HD-TVP-VAR Model
- 1.
- Construction of HD-TVP-VAR Model
- 2.
- Construction of Risk Spillover Effect Indicators
3. Network Analysis of Risk Contagion Between Fintech and Banking
3.1. Time-Varying Characteristics of Risk Contagion Between Fintech and Banking
3.2. Time-Varying Characteristics of Internal Risk Contagion in Fintech and Banking
3.3. Analysis of Risk Contagion Relationship Between Fintech and Banking
3.4. Risk Contagion Network Analysis of Fintech and Banking
4. Early Warning Analysis of Risk Contagion Between Fintech and Banking Results
4.1. Identification of Risk Contagion Status
4.2. Risk Early Warning Analysis Based on Logit Model
4.2.1. Indicator System Construction
4.2.2. Results of Principal Component Analysis
4.3. Warning Results
4.4. Early Warning Signal Restoration
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X. Silicon Valley Bank collapse: Causes&consequences. Highlights Bus. Econ. Manag. 2024, 32, 53–57. [Google Scholar] [CrossRef]
- Kryshtal, H.; Samofalova, M.; Sakhno, L.; Fedyna, V.; Mokiienko, T.; Yermolaieva, M. Cyber risks in the financial and banking system: Analysis of direct and systemic losses. Financ. Credit Act. Probl. Theory Pract. 2025, 2, 125–140. [Google Scholar] [CrossRef]
- Brandl, B.; Hornuf, L. Where Did FinTechs Come From, and Where Do They Go? The Transformation of the Financial Industry in Germany After Digitalization. Front. Artif. Intell. 2020, 3, 8. [Google Scholar] [CrossRef]
- Virginia, M.; Oona, V.; Emil, S. The Digital Transformation and Disruption in Business Models of the Banks under the Impact of FinTech and BigTech. In Proceedings of the International Conference on Business Excellence, Bucharest, Romania, 26–28 March 2020. [Google Scholar] [CrossRef]
- Rodrigues, A.R.D.; Ferreira, F.A.; Teixeira, F.J.; Zopounidis, C. Artificial intelligence, digital transformation and cybersecurity in the banking sector: A multi-stakeholder cognition-driven framework. Res. Int. Bus. Financ. 2022, 60, 101616. [Google Scholar] [CrossRef]
- Chen, J.; Yahya, M.H.; Ali, M.H.; Qamas, M.A. The Influence of Internet Finance on the Profitability of Commercial Banks in China. Soc. Manag. Res. J. 2022, 19, 1–34. [Google Scholar] [CrossRef]
- Wang, H.; Haji Yahya, M.H.D.; Rahim, N.A.; Ashhari, Z.M. The impact of fintech on the profitability of Chinese commercial banks. Int. J. Appl. Econ. Financ. Account. 2024, 20, 128–138. [Google Scholar] [CrossRef]
- Banna, H.; Hassan, M.K.; Rashid, M. Fintech-based financial inclusion and bank risk-taking: Evidence from OIC countries. J. Int. Financ. Mark. Inst. Money 2021, 75, 101447. [Google Scholar] [CrossRef]
- Grennan, J.; Michaely, R. FinTechs and the Market for Financial Analysis. J. Financ. Quant. Anal. 2021, 56, 1877–1907. [Google Scholar] [CrossRef]
- Cheng, M.; Qu, Y. Does bank FinTech reduce credit risk? Evidence from China. Pac.-Basin Financ. J. 2020, 63, S927538X–S19307607X. [Google Scholar] [CrossRef]
- Buchak, G.; Matvos, G.; Piskorski, T.; Seru, A. Fintech, regulatory arbitrage, and the rise of shadow banks. J. Financ. Econ. 2018, 130, 453–483. [Google Scholar] [CrossRef]
- Wang, R.; Liu, J.; Luo, H. Fintech Development and Bank Risk Taking in China. Eur. J. Financ. 2020, 27, 397–418. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhu, X.; Yao, Y.; Casu, B. Risk spillovers between FinTech and traditional financial institutions: Evidence from the U.S. Int. Rev. Financ. Anal. 2020, 71, 101544. [Google Scholar] [CrossRef]
- Acemoglu, D.; Carvalho, V.M.; Ozdaglar, A.; Tahbaz-Salehi, A. The Network Origins of Aggregate Fluctuations. Econometrica 2012, 80, 1977–2016. [Google Scholar] [CrossRef]
- Caccioli, F.; Shrestha, M.; Moore, C.; Farmer, J.D. Stability analysis of financial contagion due to overlapping portfolios. J. Bank. Financ. 2014, 46, 233–245. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 2014, 182, 119–134. [Google Scholar] [CrossRef]
- Härdle, W.K.; Wang, W.; Yu, L. Tenet: Tail-event driven network risk. J. Econom. 2016, 193, 251–265. [Google Scholar] [CrossRef]
- Billio, M.; Casarin, R.; Rossini, L. Bayesian nonparametric sparse VAR models. J. Econom. 2019, 212, 97–115. [Google Scholar] [CrossRef]
- Shahzad, S.J.H.; Naeem, M.A.; Peng, Z.; Bouri, E. Asymmetric volatility spillover among Chinese sectors during COVID-19. Int. Rev. Financ. Anal. 2021, 75, 101754. [Google Scholar] [CrossRef]
- Uddin, G.S.; Yahya, M.; Park, D.; Hedström, A.; Tian, S. Bond market spillover networks of ASEAN-4 markets: Is the global pandemic different? Int. Rev. Econ. Financ. 2024, 89, 451–467. [Google Scholar] [CrossRef]
- Cogley, T.; Sargent, T.J. Evolving post-World War II U.S. inflation dynamics. NBER Macroecon. Annu. 2001, 16, 331–373. [Google Scholar] [CrossRef]
- Primiceri, G.E. Time-Varying Structural Vector Autoregressions and Monetary Policy. Rev. Econ. Stud. 2005, 72, 821–852. [Google Scholar] [CrossRef]
- Koop, G.; Korobilis, D. Large Time-Varying Parameter VARs. J. Econom. 2013, 177, 185–198. [Google Scholar] [CrossRef]
- Antonakakis, N.; Chatziantoniou, I.; Gabauer, D. Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions. J. Risk Financ. Manag. 2020, 13, 84. [Google Scholar] [CrossRef]
- Frankel, J.A.; Rose, A.K. Currency crashes in emerging markets: An empirical treatment. J. Int. Econ. 1996, 41, 351–366. [Google Scholar] [CrossRef]
- Kaminsky, G.; Lizondo, S.; Reinhart, C.M. Leading Indicators of Currency Crises. IMF Econ. Rev. 1998, 45, 1–48. [Google Scholar] [CrossRef]
- Perraudin, W.R.M.; Kumar, M.S.; Moorthy, U. Predicting emerging market currency crashes. J. Empir. Financ. 2003, 10, 427–454. [Google Scholar] [CrossRef]
- Hamilton, J.D. A New Approach to the Economic Analysis of Non-stationary Time Series and the Business Cycle. Econometrica 1989, 57, 357–384. [Google Scholar] [CrossRef]
- Dai, W.; Serletis, A. On the Markov switching welfare cost of inflation. J. Econ. Dyn. Control 2019, 108, 103748. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, S.; Zhu, G.; Zheng, H. A machine learning-based early warning system for systemic banking crises. Appl. Econ. 2021, 53, 2974–2992. [Google Scholar] [CrossRef]
- Casabianca, E.J.; Catalano, M.; Forni, L.; Giarda, E.; Passeri, S. A machine learning approach to rank the determinants of banking crises over time and across countries. J. Int. Money Financ. 2022, 129, 102739. [Google Scholar] [CrossRef]
- Audibert, J.; Michiardi, P.; Guyard, F.; Marti, S.; Zuluaga, M.A. Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly Detection? Pattern Recognit. 2022, 132, 108945. [Google Scholar] [CrossRef]
- Angelopoulou, E.; Balfoussia, H.; Gibson, H.D. Building a financial conditions index for the euro area and selected euro area countries: What does it tell us about the crisis? Econ. Model. 2014, 38, 392–403. [Google Scholar] [CrossRef]
- Proaño, C.R.; Schoder, C.; Semmler, W. Financial stress, sovereign debt, and economic activity in industrialized countries: Evidence from dynamic threshold regressions. J. Int. Money Financ. 2014, 45, 17–37. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Zeaiter, H. The determinants of sovereign default: A sensitivity analysis. Int. Rev. Econ. Financ. 2014, 33, 300–318. [Google Scholar] [CrossRef]
- Buse, R.; Schienle, M. Measuring connectedness of euro area sovereign risk. Int. J. Forecast. 2019, 35, 25–44. [Google Scholar] [CrossRef]
- Filippopoulou, C.; Galariotis, E.; Spyrou, S. An early warning system for predicting systemic banking crises in the Eurozone: A logit regression approach. J. Econ. Behav. Organ. 2020, 172, 344–363. [Google Scholar] [CrossRef]
- González-Rivera, G.; Rodríguez-Caballero, C.V.; Ruiz, E. Expecting the unexpected: Stressed scenarios for economic growth. J. Appl. Econom. 2024, 39, 926–942. [Google Scholar] [CrossRef]






| From others | |||||
| To others |
| Organization Type | List of Specific Institutions |
|---|---|
| State-owned Commercial Banks (5) | Agricultural Bank of China (NYYH), Bank of Communications (JTUH), Industrial and Commercial Bank of China (GSYH), China Construction Bank (JSYH), Bank of China (ZGYH) |
| Joint-stock Commercial Banks (8) | Ping An Bank (PAYH), Everbright Bank (PAYH), Shanghai Pudong Development Bank (PFYH), Huaxia Bank (HXYH), China Minsheng Bank (MSYH), China Merchants Bank (ZSYH), China CITIC Bank (ZXYH), Industrial Bank (XYYH) |
| City Commercial Banks (3) | Bank of Ningbo (NBYH), Bank of Beijing (BJYH), Bank of Nanjing (NJYH) |
| Fintech companies (27) | Anshuo Information (ASXX), Boyan Technology (BYKJ), Cuiwei (CWGF), Great Wisdom (DZH), CETC Digital (DKSZ), East Money (DFCF), Donghua Software (DHRJ), Eastcompeace (DXHP), Feitian Technologies (FTCX), GRG Banking (GDYT), Hengbao Shares (HBGF), Hundsun Technologies (HSDZ), Kingdom (JZGF), Nantian Electronics Information (NTXX), Runhe Software (RHRJ), Digital China Information Service (SZXX), TRS (TES), Hithink RoyalFlush (THS), New Continent (XDL), Xinguodu (XGD), Sunyard (XYD), Yinxin Technology (YXKJ), Winsolutions (YZJ), Winshine (YSS), Sunline Tech (CLKJ), Sunlight (ZRKJ), Sinodata (ZKJC) |
| Sector | Rank | Out-Degree | In-Degree | Centrality | Net Outflow | Eigenvector Centrality | PageRank | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Name | Value | Name | Desired Value | Name | Desired Value | Name | Desired Value | Name | Desired Value | Name | Desired Value | ||
| Fintech | 1 | ZKCJ | 104.70 | YXKJ | 89.25 | YXKJ | 193.88 | ZKJC | 16.12 | YXKJ | 1.0000 | YXKJ | 0.0242 |
| 2 | YXKJ | 104.63 | HBGF | 88.87 | ZKJC | 193.29 | YXKJ | 15.38 | HBGF | 0.9958 | HBGF | 0.0241 | |
| 3 | HBGF | 102.36 | ZKJC | 88.59 | HBGF | 191.23 | HBGF | 13.48 | ZKJC | 0.9932 | ZKJC | 0.0240 | |
| 4 | XDL | 94.81 | XDL | 88.16 | XDL | 182.96 | XDL | 6.65 | XDL | 0.9880 | XDL | 0.0239 | |
| 5 | ASXX | 94.06 | ASXX | 88.01 | ASXX | 182.07 | YZJ | 6.45 | ASXX | 0.9873 | ASXX | 0.0238 | |
| Bank | 1 | HXYH | 98.95 | GDYH | 87.99 | HXYH | 186.24 | HXYH | 11.65 | GDYH | 0.9812 | GDYH | 0.0237 |
| 2 | GDYH | 95.79 | JSYH | 87.56 | GDYH | 183.78 | GDYH | 7.79 | JSYH | 0.9770 | HXYH | 0.0236 | |
| 3 | XYYH | 93.28 | HXYH | 87.30 | XYYH | 180.08 | XYYH | 6.48 | HXYH | 0.9733 | JSYH | 0.0236 | |
| 4 | JSYH | 92.39 | JTYH | 87.15 | JSYH | 179.95 | JSYH | 4.82 | JTYH | 0.9731 | XYYH | 0.0235 | |
| 5 | JTYH | 90.14 | ZGYH | 86.96 | JTYH | 177.29 | JTYH | 2.98 | ZGYH | 0.9714 | JTYH | 0.0234 | |
| Dimension | Name of Index | Indicator Description |
|---|---|---|
| Economic fundamentals | Industrial Value Added | year-on-year increase in industrial added value |
| Consumption | year-on-year growth rate of total retail sales of consumer goods | |
| Fixed Asset Investment | year-on-year growth rate of total fixed assets investment | |
| inflation | Year-on-year increase in CPI | |
| Manufacturing PMI | PMI | |
| Entrepreneurial confidence | macroeconomic climate index | |
| Monetary policy environment | M2 Growth Rate (YoY) | Year-on-year M2 |
| interest rate | Shibor1 week | |
| Banking system | Loan Balance | year-on-year increase in RMB loan balance |
| loan-to-deposit ratio | loan/deposit | |
| Domestic financial market condition | stock market volatility | Shanghai Stock Exchange Index Volatility |
| Foreign Exchange Volatility | USD/CNY exchange rate volatility | |
| credit spread in bond market | 3-month to 10-year Treasury yield spread | |
| fluctuation of real estate market | Shenwan Real Estate Index Volatility | |
| Financial market volatility | CSI Fintech Index Volatility | |
| Global financial market conditions | global financial market volatility | VIX Volatility Index |
| global interest rate environment | Federal funds rate | |
| global financial market liquidity | The difference between the 3-month LIBOR and the 3-month U. S. Treasury yield | |
| International environment | currency reserves | month-on-month increase in foreign exchange reserves |
| Foreign trade import and export | year-on-year growth rate of import and export |
| Ingredient | Eigenvalue | Cumulative Variance |
|---|---|---|
| PC1 | 4.6739 | 0.2337 |
| PC2 | 4.1322 | 0.4403 |
| PC3 | 2.4706 | 0.5638 |
| PC4 | 1.8297 | 0.6553 |
| PC5 | 1.1656 | 0.7136 |
| PC6 | 0.9242 | 0.7598 |
| PC7 | 0.8269 | 0.8012 |
| PC8–PC20 | - | - |
| Variable | Coefficient | Standard Error | p-Value |
|---|---|---|---|
| F1 | −0.3417 *** | 0.0871 | 0.0001 |
| F2 | 0.1617 ** | 0.0744 | 0.0298 |
| F3 | 0.3190 ** | 0.1605 | 0.0468 |
| F4 | 0.2575 | 0.1788 | 0.1498 |
| F5 | 0.8701 *** | 0.2889 | 0.0026 |
| F6 | 0.6090 | 0.5760 | 0.2904 |
| F7 | 1.2367 * | 0.6718 | 0.0656 |
| L. SR | 2.8880 * | 1.5368 | 0.0602 |
| Const | −2.7531 ** | 1.0693 | 0.0100 |
| R-squared | 0.4153 | ||
| LLK | −44.4247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sun, P.; Xiang, X.; Ye, K. Research on Risk Contagion and Risk Early Warning of China’s Fintech and Banking Industry from the Perspective of Complex Networks. Mathematics 2026, 14, 220. https://doi.org/10.3390/math14020220
Sun P, Xiang X, Ye K. Research on Risk Contagion and Risk Early Warning of China’s Fintech and Banking Industry from the Perspective of Complex Networks. Mathematics. 2026; 14(2):220. https://doi.org/10.3390/math14020220
Chicago/Turabian StyleSun, Peng, Xin Xiang, and Kaiyue Ye. 2026. "Research on Risk Contagion and Risk Early Warning of China’s Fintech and Banking Industry from the Perspective of Complex Networks" Mathematics 14, no. 2: 220. https://doi.org/10.3390/math14020220
APA StyleSun, P., Xiang, X., & Ye, K. (2026). Research on Risk Contagion and Risk Early Warning of China’s Fintech and Banking Industry from the Perspective of Complex Networks. Mathematics, 14(2), 220. https://doi.org/10.3390/math14020220
