Dual-Population Cooperative Correlation Evolutionary Algorithm for Constrained Multi-Objective Optimization
Abstract
:1. Introduction
- (1) Feasibility priority rule: Feasible solutions strictly dominate all infeasible solutions.
- (2) Feasible solution comparison: For mutually feasible solutions, the conventional Pareto dominance relation applies.
- (3) Infeasible solution comparison: Among infeasible solutions, dominance is determined by comparing their constraint violation magnitudes:
- (1)
- The key innovation is CMOEA-DDC’s unique population interaction: Information exchange occurs only during reproduction, while auxiliary populations provide targeted support during environmental selection. This design maintains evolutionary independence while enhancing solution quality, thereby achieving a better balance between convergence and population diversity.
- (2)
- This study develops distinct selection mechanisms for different populations: The driving population disregards constraints to intensify selection pressure toward the unconstrained Pareto front while maintaining diversity through minimum shift-based density estimation (SDE); the normal population prioritizes constraint satisfaction while balancing objectives. Comparative experiments across multiple test sets with seven state-of-the-art CMOEAs demonstrate the superiority of the proposed method.
2. Related Work and Motivation
2.1. Related Work
2.1.1. Constraints Are Prioritized over Objectives
2.1.2. Constraints Are Equivalent to Objectives
2.1.3. Balanced Regulation Through Multi-Population Mechanisms
2.2. Motivation
3. The Proposed CMOEA-DCC
3.1. Framework of CMOEA-DCC
Algorithm 1 Framework of CMOEA-DCC |
Input: N (population size) (probability parameter) a (balancing factor) Output: P (final population)
|
- Genetic Algorithm (GA) [40] Guided Population:
- Differential Evolution (DE) [41] Main Population:
Algorithm 2 EnvironmentalSelection1 |
Input: (driving population), (offspring population) Output: (new driving population)
|
Algorithm 3 EnvironmentalSelection2 |
Input: (new driving population), (driving population), (offspring population), a (balancing factor) Output: P (final population)
|
3.2. Driving Population for Objectives
3.3. Normal Population for Constraints
3.4. Complexity Analysis of CMOEA-DCC
3.4.1. Time Complexity
- 1.
- Dual-population initialization:
- 2.
- Reproduction phase:
- Main population selection:textit (NSGA-III based mechanism)
- Auxiliary population selection: (Simplified selection)
- 3.
- Environmental selection:
- Non-dominated sorting:
- Elitism preservation:
- 4.
- Cooperative operation: (Information exchange)
- Dominant term derivation:
3.4.2. Space Complexity
- Dominant term derivation:
4. Experimental Study
4.1. Experimental Setup
4.1.1. Test Problem Setup
4.1.2. Algorithm Setup
4.1.3. Performance Index Selection
4.1.4. Termination Parameter Setup
4.2. Experimental Results on the MW Test Set
4.3. Experimental Results on the LIRCMOP Test Set
4.4. Performance Analysis
4.5. Experimental Results on the Real-World Case Problems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zarei, F.; Arashpour, M.; Mirnezami, S.A.; Shahabi-Shahamiri, R.; Ghasemi, M. Multi-skill resource-constrained project scheduling problem considering overlapping: Fuzzy multi-objective programming approach to a case study. Int. J. Constr. Manag. 2024, 24, 820–833. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, K.; Zeng, H.; Yan, J.; Dai, J.; Dai, Z. Adaptive Constraint Relaxation-Based Evolutionary Algorithm for Constrained Multi-Objective Optimization. Mathematics 2024, 12, 3075. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Bader, J.; Zitzler, E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 2011, 19, 45–76. [Google Scholar] [CrossRef]
- Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in optimisation of water distribution systems? A literature review of system operation. Environ. Model. Softw. 2017, 93, 209–254. [Google Scholar] [CrossRef]
- Datta, R.; Pradhan, S.; Bhattacharya, B. Analysis and design optimization of a robotic gripper using multiobjective genetic algorithm. IEEE Trans. Syst. Man, Cybern. Syst. 2015, 46, 16–26. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, M.; Wang, Y.; Cheng, J.; Yachi, H.; Wang, J. Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 601–614. [Google Scholar] [CrossRef]
- Ding, L.; Shi, C.; Zhou, J. Collaborative route optimization and resource management strategy for multi-target tracking in airborne radar system. Digit. Signal Process. 2023, 138, 104051. [Google Scholar] [CrossRef]
- Wang, Q.; Li, T.; Meng, F.; Li, B. A framework for constrained large-scale multi-objective white-box problems based on two-scale optimization through decision transfer. Inf. Sci. 2024, 665, 120411. [Google Scholar] [CrossRef]
- Wang, F.; Huang, M.; Yang, S.; Wang, X. Penalty and prediction methods for dynamic constrained multi-objective optimization. Swarm Evol. Comput. 2023, 80, 101317. [Google Scholar] [CrossRef]
- Gu, Q.; Liu, R.; Hui, Z.; Wang, D. A constrained multi-objective optimization algorithm based on coordinated strategy of archive and weight vectors. Expert Syst. Appl. 2024, 244, 122961. [Google Scholar] [CrossRef]
- Kawachi, T.; Kushida, J.i.; Hara, A.; Takahama, T. Efficient parameter-free adaptive penalty method with balancing the objective function value and the constraint violation. Int. J. Comput. Intell. Stud. 2021, 10, 127–160. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Su, Y.; Zhang, X.; Tan, K.C.; Jin, Y. Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization. IEEE Trans. Cybern. 2021, 52, 9559–9572. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Tian, Y.; Li, C.; Yue, D. Cooperative constrained multi-objective dual-population evolutionary algorithm for optimal dispatching of wind-power integrated power system. Swarm Evol. Comput. 2024, 87, 101525. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, H.; Zhang, T.; Meuser, C.; von Unwerth, T. Multi-Objective Operating Parameters Optimization for the Start Process of Proton Exchange Membrane Fuel Cell Stack with Non-Dominated Sorting Genetic Algorithm II. J. Electrochem. Soc. 2024, 171, 034506. [Google Scholar] [CrossRef]
- Zhou, T.; He, P.; Niu, B.; Yue, G.; Wang, H. A novel competitive constrained dual-archive dual-stage evolutionary algorithm for constrained multiobjective optimization. Swarm Evol. Comput. 2023, 83, 101417. [Google Scholar] [CrossRef]
- Bao, Q.; Wang, M.; Dai, G.; Chen, X.; Song, Z.; Li, S. An archive-based two-stage evolutionary algorithm for constrained multi-objective optimization problems. Swarm Evol. Comput. 2022, 75, 101161. [Google Scholar] [CrossRef]
- Zhong, X.; Yao, X.; Gong, D.; Qiao, K.; Gan, X.; Li, Z. A dual-population-based evolutionary algorithm for multi-objective optimization problems with irregular Pareto fronts. Swarm Evol. Comput. 2024, 87, 101566. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, S.X.; Zheng, S.Y. A diverse/converged individual competition algorithm for computationally expensive many-objective optimization. Appl. Intell. 2024, 54, 2564–2581. [Google Scholar] [CrossRef]
- Coello Coello, C.A.; Christiansen, A.D. MOSES: A multiobjective optimization tool for engineering design. Eng. Optim. 1999, 31, 337–368. [Google Scholar] [CrossRef]
- Su, T.V.; Hang, D.D. Second-order optimality conditions in locally Lipschitz multiobjective fractional programming problem with inequality constraints. Optimization 2023, 72, 1171–1198. [Google Scholar] [CrossRef]
- Fan, C.; Wang, J.; Xiao, L.; Cheng, F.; Ai, Z.; Zeng, Z. A coevolution algorithm based on two-staged strategy for constrained multi-objective problems. Appl. Intell. 2022, 52, 17954–17973. [Google Scholar] [CrossRef]
- Hao, L.; Peng, W.; Liu, J.; Zhang, W.; Li, Y.; Qin, K. Competition-based two-stage evolutionary algorithm for constrained multi-objective optimization. Math. Comput. Simul. 2025, 230, 207–226. [Google Scholar] [CrossRef]
- Yeste, P.; Melsen, L.A.; García-Valdecasas Ojeda, M.; Gámiz-Fortis, S.R.; Castro-Díez, Y.; Esteban-Parra, M.J. A Pareto-Based Sensitivity Analysis and Multiobjective Calibration Approach for Integrating Streamflow and Evaporation Data. Water Resour. Res. 2023, 59, e2022WR033235. [Google Scholar] [CrossRef]
- Fan, Z.; Li, W.; Cai, X.; Li, H.; Wei, C.; Zhang, Q.; Deb, K.; Goodman, E. Push and pull search for solving constrained multi-objective optimization problems. Swarm Evol. Comput. 2019, 44, 665–679. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Wang, Y. Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces. IEEE Trans. Evol. Comput. 2019, 23, 870–884. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Q.; Lin, Q. A constrained multiobjective evolutionary algorithm with detect-and-escape strategy. IEEE Trans. Evol. Comput. 2020, 24, 938–947. [Google Scholar] [CrossRef]
- Lai, Y.; Chen, J.; Chen, Y.; Zeng, H.; Cai, J. Feedback Tracking Constraint Relaxation Algorithm for Constrained Multi-Objective Optimization. Mathematics 2025, 13, 629. [Google Scholar] [CrossRef]
- Wang, J.; Liang, G.; Zhang, J. Cooperative differential evolution framework for constrained multiobjective optimization. IEEE Trans. Cybern. 2018, 49, 2060–2072. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, M.; Wang, J.; Zhang, Z.; Xiang, Y.; Zhang, J. Tri-goal evolution framework for constrained many-objective optimization. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 50, 3086–3099. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.; Song, W. A new fitness function with two rankings for evolutionary constrained multiobjective optimization. IEEE Trans. Syst. Man, Cybern. Syst. 2019, 51, 5005–5016. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Yu, H. A constrained multiobjective evolutionary algorithm with the two-archive weak cooperation. Inf. Sci. 2022, 615, 415–430. [Google Scholar] [CrossRef]
- Qiao, K.; Liang, J.; Yu, K.; Yue, C.; Lin, H.; Zhang, D.; Qu, B. Evolutionary constrained multiobjective optimization: Scalable high-dimensional constraint benchmarks and algorithm. IEEE Trans. Evol. Comput. 2023, 28, 965–979. [Google Scholar] [CrossRef]
- Hakimazari, M.; Baghoolizadeh, M.; Sajadi, S.M.; Kheiri, P.; Moghaddam, M.Y.; Rostamzadeh-Renani, M.; Rostamzadeh-Renani, R.; Hamooleh, M.B. Multi-objective optimization of daylight illuminance indicators and energy usage intensity for office space in Tehran by genetic algorithm. Energy Rep. 2024, 11, 3283–3306. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Zhou, Y.; Zeng, W. An adaptive tradeoff model for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 2008, 12, 80–92. [Google Scholar] [CrossRef]
- Palakonda, V.; Kang, J.M.; Jung, H. Clustering-aided grid-based one-to-one selection-driven evolutionary algorithm for multi/many-objective optimization. IEEE Access 2024, 12, 120612–120623. [Google Scholar] [CrossRef]
- Li, K.; Chen, R.; Fu, G.; Yao, X. Two-archive evolutionary algorithm for constrained multiobjective optimization. IEEE Trans. Evol. Comput. 2018, 23, 303–315. [Google Scholar] [CrossRef]
- Palakonda, V.; Kang, J.M. Pre-DEMO: Preference-inspired differential evolution for multi/many-objective optimization. IEEE Trans. Syst. Man, Cybern. Syst. 2023, 53, 7618–7630. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, T.; Xiao, J.; Zhang, X.; Jin, Y. A coevolutionary framework for constrained multiobjective optimization problems. IEEE Trans. Evol. Comput. 2020, 25, 102–116. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Cheng, R.; Jin, Y. An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 2014, 19, 201–213. [Google Scholar] [CrossRef]
- Tan, Z.; Li, K.; Wang, Y. Differential evolution with adaptive mutation strategy based on fitness landscape analysis. Inf. Sci. 2021, 549, 142–163. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y. Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons. IEEE Trans. Evol. Comput. 2019, 23, 972–986. [Google Scholar] [CrossRef]
- Fan, Z.; Li, W.; Cai, X.; Huang, H.; Fang, Y.; You, Y.; Mo, J.; Wei, C.; Goodman, E. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions. Soft Comput. 2019, 23, 12491–12510. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 2013, 18, 602–622. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Wang, B.C.; Tang, K. Handling constrained multiobjective optimization problems via bidirectional coevolution. IEEE Trans. Cybern. 2021, 52, 10163–10176. [Google Scholar] [CrossRef]
- He, C.; Cheng, R.; Tian, Y.; Zhang, X.; Tan, K.C.; Jin, Y. Paired offspring generation for constrained large-scale multiobjective optimization. IEEE Trans. Evol. Comput. 2020, 25, 448–462. [Google Scholar] [CrossRef]
- Ming, F.; Gong, W.; Zhen, H.; Wang, L.; Gao, L. Constrained multi-objective optimization evolutionary algorithm for real-world continuous mechanical design problems. Eng. Appl. Artif. Intell. 2024, 135, 108673. [Google Scholar] [CrossRef]
- Wang, Y.; Zuo, M.; Gong, D. Migration-based algorithm library enrichment for constrained multi-objective optimization and applications in algorithm selection. Inf. Sci. 2023, 649, 119593. [Google Scholar] [CrossRef]
- Cenikj, G.; Petelin, G.; Eftimov, T. A cross-benchmark examination of feature-based algorithm selector generalization in single-objective numerical optimization. Swarm Evol. Comput. 2024, 87, 101534. [Google Scholar] [CrossRef]
- Kumar, A.; Wu, G.; Ali, M.Z.; Luo, Q.; Mallipeddi, R.; Suganthan, P.N.; Das, S. A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results. Swarm Evol. Comput. 2021, 67, 100961. [Google Scholar] [CrossRef]
Problem | M | D | NSGAIII | ANSGAIII | BiCo | POCEA | ToP | TiGE2 | CMOEMT | CMOEA-DCC |
---|---|---|---|---|---|---|---|---|---|---|
MW1 | 2 | 15 | 2.3212e-3 (9.25e-5) − | 4.4150e-3 (1.01e-2) − | 1.6124e-3 (1.10e-5) ≈ | 7.0246e-3 (9.94e-4) − | NaN (NaN) | 1.4272e-2 (9.03e-3) − | 9.0638e-2 (4.42e-2) − | 1.6166e-3 (1.06e-5) |
MW2 | 2 | 15 | 2.3363e-2 (9.53e-3) − | 2.0643e-2 (6.39e-3) − | 1.1374e-2 (7.98e-3) ≈ | 1.1063e-1 (6.98e-2) − | 1.3611e-1 (9.35e-2) − | 6.6549e-1 (5.34e-2) − | 4.0501e-2 (2.85e-2) − | 4.4367e-3 (2.12e-3) |
MW3 | 2 | 15 | 4.5330e-3 (5.57e-4) + | 9.8468e-2 (2.81e-1) − | 4.6843e-3 (2.11e-4) ≈ | 1.0727e-2 (1.78e-3) − | 5.1955e-1 (4.60e-1) − | 2.2084e-2 (4.22e-3) − | 1.6305e-2 (3.24e-3) − | 4.5787e-3 (1.10e-4) |
MW4 | 3 | 15 | 4.1178e-2 (7.43e-5) + | 4.1238e-2 (2.06e-4) + | 4.1058e-2 (4.99e-4) + | 5.0664e-2 (1.69e-3) − | 3.9785e-1 (0.00e+0) ≈ | 1.2044e-1 (4.70e-2) − | 1.1079e-1 (2.35e-2) − | 4.1623e-2 (3.12e-4) |
MW5 | 2 | 15 | 1.5977e-1 (2.67e-1) − | 1.2875e-1 (2.67e-1) − | 5.3010e-4 (4.13e-4) − | 6.5924e-2 (1.09e-2) − | 7.3984e-1 (9.13e-3) − | 3.5717e-2 (7.75e-3) − | 7.7276e-2 (2.06e-2) − | 1.2564e-4 (5.54e-5) |
MW6 | 2 | 15 | 2.6555e-2 (2.84e-2) − | 2.6745e-2 (1.26e-2) − | 8.8604e-3 (6.57e-3) − | 4.9280e-1 (3.38e-1) − | 5.1175e-1 (3.59e-1) − | 2.7585e-1 (3.37e-1) − | 3.6539e-2 (1.27e-2) − | 3.8251e-3 (2.22e-3) |
MW7 | 2 | 15 | 2.9207e-2 (1.00e-1) ≈ | 4.9102e-2 (1.38e-1) ≈ | 4.2519e-3 (2.13e-4) + | 1.2949e-2 (1.66e-3) − | 1.3725e-2 (2.56e-3) − | 4.6804e-2 (2.38e-2) − | 1.5659e-2 (3.63e-3) − | 4.4269e-3 (2.96e-4) |
MW8 | 3 | 15 | 5.4555e-2 (8.83e-3) − | 1.1527e-1 (1.62e-1) − | 4.5475e-2 (1.28e-3) − | 1.0552e-1 (4.53e-2) − | 4.1192e-1 (3.80e-1) − | 6.8180e-1 (1.21e-1) − | 7.0693e-2 (2.33e-2) − | 4.3093e-2 (6.81e-4) |
MW9 | 2 | 15 | 6.7893e-3 (2.08e-3) − | 9.2317e-3 (3.51e-3) − | 4.7970e-3 (5.29e-4) − | 3.2400e-2 (5.90e-3) − | 6.7423e-1 (1.21e-1) − | 1.0892e-1 (1.79e-1) − | 9.5902e-2 (2.11e-1) − | 4.2306e-3 (1.78e-4) |
MW10 | 2 | 15 | 1.7397e-1 (1.77e-1) − | 1.6006e-1 (1.84e-1) − | 1.0895e-1 (7.02e-2) − | 4.4117e-1 (2.14e-1) − | NaN (NaN) | 6.2359e-2 (5.25e-2) − | 8.3408e-2 (5.89e-2) − | 5.3724e-3 (3.81e-3) |
MW11 | 2 | 15 | 4.8952e-1 (3.23e-1) − | 3.8765e-1 (3.51e-1) − | 5.9494e-3 (9.42e-5) ≈ | 3.4567e-2 (7.99e-3) − | 3.2681e-1 (3.03e-1) − | 3.8798e-2 (1.12e-2) − | 1.8706e-2 (4.97e-3) − | 5.9309e-3 (1.20e-4) |
MW12 | 2 | 15 | 4.6820e-3 (1.13e-5) − | 6.8828e-3 (8.43e-4) − | 4.6327e-3 (8.08e-5) ≈ | 1.4905e-2 (1.50e-3) − | 6.1013e-1 (3.03e-1) − | 7.4271e-2 (1.70e-1) − | 2.6368e-2 (1.05e-2) − | 4.6022e-3 (8.54e-5) |
MW13 | 2 | 15 | 1.1180e-1 (5.55e-2) − | 2.4613e-1 (4.18e-1) − | 4.4936e-2 (2.32e-2) − | 3.0126e-1 (2.39e-1) − | 6.3788e-1 (4.32e-1) − | 1.1183e+0 (6.09e-1) − | 1.0459e-1 (3.46e-2) − | 1.1911e-2 (3.83e-3) |
MW14 | 3 | 15 | 1.3056e-1 (3.48e-3) − | 1.1180e-1 (2.46e-3) − | 9.8229e-2 (1.72e-3) − | 1.4401e-1 (2.57e-3) − | 2.0966e-1 (1.19e-1) − | 1.5536e-1 (7.73e-3) − | 7.1254e-1 (1.98e-1) − | 9.6813e-2 (1.49e-3) |
2/11/1 | 1/12/1 | 2/7/5 | 0/14/0 | 0/11/1 | 0/14/0 | 0/14/0 |
Problem | M | D | NSGAIII | ANSGAIII | BiCo | POCEA | ToP | TiGE2 | CMOEMT | CMOEA-DCC |
---|---|---|---|---|---|---|---|---|---|---|
MW1 | 2 | 15 | 4.8889e-1 (1.03e-4) − | 4.8651e-1 (1.14e-2) − | 4.9013e-1 (1.16e-5) + | 4.7943e-1 (2.22e-3) − | NaN (NaN) | 4.7444e-1 (1.07e-2) − | 3.7795e-1 (3.83e-2) − | 4.9008e-1 (2.46e-5) |
MW2 | 2 | 15 | 5.4918e-1 (1.54e-2) − | 5.5304e-1 (1.05e-2) − | 5.6915e-1 (1.37e-2) ≈ | 4.3168e-1 (8.12e-2) − | 4.0779e-1 (1.04e-1) − | 1.0922e-1 (3.50e-2) − | 5.2371e-1 (3.92e-2) − | 5.8116e-1 (3.52e-3) |
MW3 | 2 | 15 | 5.4558e-1 (5.12e-4) + | 4.9005e-1 (1.68e-1) − | 5.4454e-1 (4.14e-4) − | 5.3702e-1 (2.51e-3) − | 2.3056e-1 (2.65e-1) − | 5.3090e-1 (2.80e-3) − | 5.2490e-1 (6.74e-3) − | 5.4485e-1 (2.31e-4) |
MW4 | 3 | 15 | 8.4165e-1 (7.56e-5) + | 8.4161e-1 (1.82e-4) + | 8.4141e-1 (5.79e-4) + | 8.2883e-1 (2.30e-3) − | 3.2969e-1 (0.00e+0) ≈ | 7.5531e-1 (4.83e-2) − | 7.4032e-1 (3.39e-2) − | 8.4026e-1 (5.93e-4) |
MW5 | 2 | 15 | 2.6208e-1 (8.69e-2) − | 2.7718e-1 (8.34e-2) − | 3.2437e-1 (2.84e-4) − | 2.6713e-1 (1.32e-2) − | 8.0254e-2 (1.49e-2) − | 3.0752e-1 (3.67e-3) − | 2.3863e-1 (2.70e-2) − | 3.2468e-1 (4.25e-5) |
MW6 | 2 | 15 | 2.9588e-1 (2.80e-2) − | 2.9282e-1 (1.70e-2) − | 3.1887e-1 (9.94e-3) − | 1.2047e-1 (1.08e-1) − | 1.2239e-1 (1.03e-1) − | 2.1019e-1 (8.33e-2) − | 2.7929e-1 (1.85e-2) − | 3.2658e-1 (4.01e-3) |
MW7 | 2 | 15 | 4.0355e-1 (3.73e-2) ≈ | 3.9563e-1 (5.16e-2) ≈ | 4.1243e-1 (3.38e-4) + | 4.0277e-1 (2.09e-3) − | 3.9828e-1 (3.04e-3) − | 3.8952e-1 (6.62e-3) − | 3.9896e-1 (4.10e-3) − | 4.1220e-1 (3.01e-4) |
MW8 | 3 | 15 | 5.1697e-1 (2.60e-2) − | 4.8767e-1 (8.58e-2) − | 5.3962e-1 (8.47e-3) − | 4.0894e-1 (8.13e-2) − | 2.5921e-1 (1.79e-1) − | 1.4376e-1 (3.83e-2) − | 4.7820e-1 (4.53e-2) − | 5.4899e-1 (4.46e-3) |
MW9 | 2 | 15 | 3.9269e-1 (3.98e-3) − | 3.8913e-1 (5.54e-3) − | 3.9639e-1 (2.59e-3) − | 3.5241e-1 (5.60e-3) − | 1.9241e-2 (5.51e-2) − | 3.3198e-1 (8.37e-2) − | 3.2620e-1 (7.81e-2) − | 3.9868e-1 (1.56e-3) |
MW10 | 2 | 15 | 3.3799e-1 (8.67e-2) − | 3.4706e-1 (9.09e-2) − | 3.7032e-1 (3.84e-2) − | 2.0323e-1 (9.70e-2) − | NaN (NaN) | 3.9939e-1 (3.48e-2) − | 3.8526e-1 (3.58e-2) − | 4.5141e-1 (6.41e-3) |
MW11 | 2 | 15 | 3.2492e-1 (8.17e-2) − | 3.5067e-1 (8.89e-2) − | 4.4809e-1 (1.44e-4) + | 4.3016e-1 (4.27e-3) − | 3.5821e-1 (7.57e-2) − | 4.3324e-1 (3.08e-3) − | 4.4071e-1 (1.88e-3) − | 4.4791e-1 (1.35e-4) |
MW12 | 2 | 15 | 6.0511e-1 (5.24e-5) − | 6.0233e-1 (8.74e-4) − | 6.0530e-1 (1.54e-4) ≈ | 5.9053e-1 (2.14e-3) − | 1.1708e-1 (2.06e-1) − | 5.4589e-1 (1.29e-1) − | 5.7818e-1 (1.60e-2) − | 6.0525e-1 (1.24e-4) |
MW13 | 2 | 15 | 4.2671e-1 (2.65e-2) − | 3.9971e-1 (7.43e-2) − | 4.5797e-1 (1.00e-2) − | 3.1855e-1 (9.45e-2) − | 2.4748e-1 (1.19e-1) − | 2.1659e-1 (9.83e-2) − | 4.3310e-1 (1.60e-2) − | 4.7577e-1 (3.63e-3) |
MW14 | 3 | 15 | 4.6598e-1 (1.53e-3) − | 4.7006e-1 (1.69e-3) − | 4.6985e-1 (1.30e-3) − | 4.5098e-1 (3.77e-3) − | 4.1457e-1 (5.45e-2) − | 4.5133e-1 (4.78e-3) − | 2.2506e-1 (7.75e-2) − | 4.7132e-1 (1.65e-3) |
2/11/1 | 1/12/1 | 4/8/2 | 0/14/0 | 0/11/1 | 0/14/0 | 0/14/0 |
Problem | M | D | NSGAIII | ANSGAIII | BiCo | POCEA | ToP | TiGE2 | CMOEMT | CMOEA-DCC |
---|---|---|---|---|---|---|---|---|---|---|
LIRCMOP1 | 2 | 30 | 3.1107e-1 (3.01e-2) − | 2.9308e-1 (3.81e-2) − | 1.9127e-1 (1.23e-2) ≈ | 4.9416e-2 (1.34e-2) ≈ | 3.1795e-1 (1.82e-2) − | 2.1528e-1 (2.33e-2) ≈ | 3.3986e-1 (1.69e-2) − | 1.4497e-1 (8.40e-2) |
LIRCMOP2 | 2 | 30 | 2.6063e-1 (1.62e-2) − | 2.5803e-1 (2.75e-2) − | 1.5915e-1 (1.57e-2) ≈ | 5.4916e-2 (1.87e-2) ≈ | 2.7320e-1 (1.63e-2) − | 1.9342e-1 (1.44e-2) ≈ | 2.7467e-1 (3.39e-2) − | 1.2849e-1 (6.51e-2) |
LIRCMOP3 | 2 | 30 | 3.1511e-1 (2.94e-2) − | 3.0279e-1 (4.69e-2) − | 1.9590e-1 (2.27e-2) − | 1.7752e-1 (1.30e-1) ≈ | 3.4453e-1 (2.39e-2) − | 2.1528e-1 (1.73e-2) ≈ | 2.9253e-1 (4.21e-2) − | 1.7994e-1 (9.04e-2) |
LIRCMOP4 | 2 | 30 | 2.8466e-1 (2.88e-2) − | 2.8403e-1 (3.00e-2) − | 1.9436e-1 (2.49e-2) ≈ | 1.6376e-1 (1.13e-1) ≈ | 3.1396e-1 (1.11e-2) − | 2.1389e-1 (1.96e-2) ≈ | 2.8009e-1 (3.38e-2) − | 1.7744e-1 (7.95e-2) |
LIRCMOP5 | 2 | 30 | 1.2237e+0 (5.18e-3) − | 1.2256e+0 (8.14e-3) − | 1.2186e+0 (6.32e-3) − | 7.0890e-1 (7.31e-1) ≈ | 1.1616e+0 (8.89e-2) ≈ | 8.2943e-1 (4.40e-1) ≈ | 1.3044e+0 (1.84e-1) − | 8.4148e-1 (5.57e-1) |
LIRCMOP6 | 2 | 30 | 1.3459e+0 (3.88e-4) − | 1.3459e+0 (3.83e-4) − | 1.3452e+0 (1.32e-4) ≈ | 9.7138e-1 (5.31e-1) − | 1.2085e+0 (3.37e-1) − | 1.2223e+0 (3.34e-1) − | 1.3602e+0 (1.47e-2) − | 6.9698e-1 (5.22e-1) |
LIRCMOP7 | 2 | 30 | 3.6777e-1 (5.68e-1) ≈ | 5.3372e-1 (6.81e-1) − | 3.6153e-1 (5.69e-1) ≈ | 6.1252e-1 (7.24e-1) − | 9.0243e-1 (8.07e-1) − | 3.1710e-1 (1.72e-1) − | 1.0872e+0 (6.90e-1) − | 8.4017e-2 (4.34e-2) |
LIRCMOP8 | 2 | 30 | 8.1133e-1 (7.30e-1) − | 1.1782e+0 (7.05e-1) − | 1.3412e+0 (6.13e-1) − | 5.9914e-1 (6.47e-1) − | 1.2653e+0 (6.66e-1) − | 4.9222e-1 (3.34e-1) − | 1.3836e+0 (5.53e-1) − | 4.2964e-2 (3.49e-2) |
LIRCMOP9 | 2 | 30 | 9.4277e-1 (1.36e-1) − | 9.9285e-1 (7.34e-2) − | 9.0201e-1 (1.55e-1) − | 6.2461e-1 (1.11e-1) ≈ | 5.4575e-1 (1.24e-1) ≈ | 8.1640e-1 (2.03e-1) − | 1.0183e+0 (1.42e-1) − | 2.2846e-1 (1.64e-1) |
LIRCMOP10 | 2 | 30 | 8.3578e-1 (9.81e-2) − | 8.7389e-1 (9.36e-2) − | 8.8950e-1 (4.46e-2) − | 4.1322e-1 (3.02e-1) ≈ | 3.9541e-1 (9.97e-2) ≈ | 9.9579e-1 (1.62e-1) − | 1.0074e+0 (9.14e-2) − | 6.5313e-2 (9.10e-2) |
LIRCMOP11 | 2 | 30 | 7.2783e-1 (1.08e-1) − | 7.2036e-1 (1.14e-1) − | 4.5439e-1 (1.98e-1) − | 4.5300e-1 (2.63e-1) − | 3.5124e-1 (9.28e-2) ≈ | 9.4417e-1 (3.52e-1) − | 9.3467e-1 (1.50e-1) − | 3.5339e-2 (4.16e-2) |
LIRCMOP12 | 2 | 30 | 7.4681e-1 (1.73e-1) − | 8.0294e-1 (1.44e-1) − | 3.2114e-1 (1.42e-1) ≈ | 3.2182e-1 (8.02e-2) ≈ | 2.7020e-1 (7.86e-2) ≈ | 4.6064e-1 (1.00e-1) − | 8.7013e-1 (2.83e-1) − | 1.6658e-1 (8.32e-2) |
LIRCMOP13 | 3 | 30 | 1.3026e+0 (2.40e-4) − | 1.3166e+0 (3.89e-3) − | 1.2575e+0 (2.74e-1) − | 4.2133e-1 (5.53e-1) ≈ | 1.2965e+0 (1.25e-1) − | 1.2487e+0 (3.21e-1) − | 2.7971e-1 (2.22e-2) ≈ | 1.0342e-1 (2.26e-3) |
LIRCMOP14 | 3 | 30 | 1.2591e+0 (1.12e-3) − | 1.2725e+0 (5.01e-3) − | 1.2751e+0 (1.60e-3) − | 2.2822e-1 (3.70e-1) ≈ | 1.2328e+0 (1.50e-1) − | 1.1247e+0 (3.82e-1) − | 2.4478e-1 (1.47e-2) ≈ | 9.7563e-2 (9.56e-4) |
0/13/1 | 0/14/0 | 0/8/6 | 0/4/10 | 0/9/5 | 0/9/5 | 0/12/2 |
Problem | M | D | NSGAIII | ANSGAIII | BiCo | POCEA | ToP | TiGE2 | CMOEMT | CMOEA-DCC |
---|---|---|---|---|---|---|---|---|---|---|
LIRCMOP1 | 2 | 30 | 1.0980e-1 (9.49e-3) − | 1.1679e-1 (1.12e-2) − | 1.4808e-1 (5.60e-3) ≈ | 2.0910e-1 (6.31e-3) ≈ | 1.1129e-1 (7.87e-3) − | 1.3830e-1 (1.03e-2) ≈ | 1.0091e-1 (4.59e-3) − | 1.7354e-1 (3.62e-2) |
LIRCMOP2 | 2 | 30 | 2.2568e-1 (7.94e-3) − | 2.2991e-1 (1.51e-2) − | 2.7185e-1 (9.50e-3) ≈ | 3.3364e-1 (7.37e-3) ≈ | 2.2230e-1 (1.15e-2) − | 2.6280e-1 (8.07e-3) ≈ | 2.1985e-1 (1.55e-2) − | 2.9473e-1 (3.32e-2) |
LIRCMOP3 | 2 | 30 | 9.8499e-2 (8.88e-3) − | 1.0600e-1 (1.30e-2) − | 1.3194e-1 (8.30e-3) ≈ | 1.3970e-1 (3.71e-2) ≈ | 9.2775e-2 (4.48e-3) − | 1.2741e-1 (6.68e-3) ≈ | 1.0345e-1 (1.17e-2) − | 1.3925e-1 (2.88e-2) |
LIRCMOP4 | 2 | 30 | 1.9554e-1 (1.29e-2) − | 1.9629e-1 (1.44e-2) − | 2.3045e-1 (1.22e-2) ≈ | 2.4561e-1 (3.48e-2) ≈ | 1.8327e-1 (1.07e-2) − | 2.2401e-1 (1.04e-2) ≈ | 1.9454e-1 (1.38e-2) − | 2.4479e-1 (3.38e-2) |
LIRCMOP5 | 2 | 30 | 0.0000e+0 (0.00e+0) ≈ | 0.0000e+0 (0.00e+0) ≈ | 0.0000e+0 (0.00e+0) ≈ | 1.3653e-1 (1.40e-1) ≈ | 1.7902e-3 (8.01e-3) ≈ | 6.2636e-2 (7.20e-2) ≈ | 0.0000e+0 (0.00e+0) ≈ | 8.6415e-2 (1.35e-1) |
LIRCMOP6 | 2 | 30 | 0.0000e+0 (0.00e+0) − | 0.0000e+0 (0.00e+0) − | 0.0000e+0 (0.00e+0) − | 4.9125e-2 (6.88e-2) ≈ | 8.6248e-3 (2.11e-2) − | 1.3063e-2 (3.19e-2) − | 0.0000e+0 (0.00e+0) − | 7.7071e-2 (7.19e-2) |
LIRCMOP7 | 2 | 30 | 2.0713e-1 (8.97e-2) ≈ | 1.7913e-1 (1.06e-1) − | 2.0836e-1 (9.01e-2) ≈ | 1.6747e-1 (1.13e-1) − | 1.3096e-1 (1.36e-1) − | 2.0490e-1 (2.84e-2) − | 8.6706e-2 (1.00e-1) − | 2.6179e-1 (1.68e-2) |
LIRCMOP8 | 2 | 30 | 1.3362e-1 (1.12e-1) − | 7.7394e-2 (1.08e-1) − | 4.9009e-2 (9.14e-2) − | 1.6601e-1 (9.84e-2) − | 7.1067e-2 (1.14e-1) − | 1.7317e-1 (4.94e-2) − | 4.2404e-2 (7.75e-2) − | 2.7820e-1 (1.50e-2) |
LIRCMOP9 | 2 | 30 | 1.3240e-1 (6.48e-2) − | 1.0870e-1 (3.57e-2) − | 1.5948e-1 (8.23e-2) − | 2.9007e-1 (6.35e-2) ≈ | 3.2885e-1 (8.17e-2) ≈ | 2.0966e-1 (8.15e-2) − | 1.1293e-1 (6.34e-2) − | 4.9342e-1 (6.49e-2) |
LIRCMOP10 | 2 | 30 | 1.1869e-1 (8.21e-2) − | 9.5717e-2 (4.61e-2) − | 8.6704e-2 (2.20e-2) − | 4.2876e-1 (1.99e-1) ≈ | 4.9376e-1 (8.28e-2) ≈ | 1.3918e-1 (9.25e-2) − | 7.3399e-2 (2.80e-2) − | 6.7830e-1 (4.27e-2) |
LIRCMOP11 | 2 | 30 | 2.4692e-1 (7.59e-2) − | 2.4286e-1 (6.75e-2) − | 4.0824e-1 (1.27e-1) − | 4.1752e-1 (1.48e-1) − | 4.6207e-1 (7.44e-2) ≈ | 1.7274e-1 (9.95e-2) − | 1.7346e-1 (7.21e-2) − | 6.7669e-1 (2.37e-2) |
LIRCMOP12 | 2 | 30 | 2.8904e-1 (9.71e-2) − | 2.4960e-1 (8.20e-2) − | 4.7732e-1 (6.08e-2) ≈ | 4.5409e-1 (4.77e-2) ≈ | 4.8963e-1 (4.24e-2) ≈ | 3.7467e-1 (5.94e-2) − | 2.2078e-1 (1.02e-1) − | 5.4108e-1 (4.39e-2) |
LIRCMOP13 | 3 | 30 | 4.4509e-4 (7.87e-6) − | 2.8904e-4 (1.43e-4) − | 2.7747e-2 (1.24e-1) − | 4.0214e-1 (2.39e-1) ≈ | 9.2131e-3 (2.25e-2) − | 3.2273e-2 (8.07e-2) − | 3.6032e-1 (1.87e-2) ≈ | 5.3477e-1 (3.31e-3) |
LIRCMOP14 | 3 | 30 | 9.6071e-4 (1.26e-4) − | 7.0184e-4 (2.83e-4) − | 4.0281e-4 (2.52e-4) − | 4.8583e-1 (1.66e-1) ≈ | 1.6602e-2 (3.43e-2) − | 6.9573e-2 (1.19e-1) − | 4.0060e-1 (1.50e-2) ≈ | 5.4964e-1 (1.52e-3) |
0/12/2 | 0/13/1 | 0/7/7 | 0/3/11 | 0/9/5 | 0/9/5 | 0/11/3 |
CMOEA-DCC vs. | IGD | HV | ||||
---|---|---|---|---|---|---|
p-Value | p-Value | |||||
NSGAIII | 402.0 | 4.0 | 0.000006 | 373.5 | 4.5 | 0.000008 |
ANSGAIII | 405.0 | 1.0 | 0.000004 | 404.0 | 2.0 | 0.000004 |
BiCo | 393.0 | 13.0 | 0.000014 | 367.0 | 11.0 | 0.000014 |
POCEA | 354.0 | 52.0 | 0.000561 | 366.0 | 40.0 | 0.000181 |
ToP | 406.0 | 0.0 | 0.000004 | 378.0 | −1.0 | 0.000003 |
TiGE2 | 405.0 | 1.0 | 0.000004 | 406.0 | 0.0 | 0.000004 |
CMOEMT | 406.0 | 0.0 | 0.000004 | 406.0 | 0.0 | 0.000004 |
Problem | M | D | NSGAIII | ANSGAIII | BiCo | POCEA | ToP | TiGE2 | CMOEMT | CMOEA-DCC |
---|---|---|---|---|---|---|---|---|---|---|
VPF | 2 | 5 | 3.6852e-1 (7.57e-2) − | 3.8214e-1 (3.69e-2) − | 3.8162e-1 (3.10e-2) − | 1.4585e-1 (1.17e-1) − | 3.9295e-1 (1.29e-5) − | 2.3649e-1 (1.73e-1) − | 3.9290e-1 (4.15e-5) − | 3.9301e-1 (6.77e-6) |
TBTD | 2 | 3 | 8.9418e-1 (2.07e-3) − | 8.9395e-1 (1.91e-3) − | 8.9999e-1 (3.29e-4) − | 3.7923e-1 (2.60e-1) − | 9.0207e-1 (1.33e-4) − | 8.9517e-1 (1.61e-3) − | 8.9847e-1 (6.65e-4) − | 9.0249e-1 (1.15e-4) |
DBD | 2 | 4 | 4.3457e-1 (9.84e-4) − | 4.2563e-1 (7.56e-3) − | 4.3495e-1 (9.21e-5) − | 4.2550e-1 (1.65e-3) − | 4.3451e-1 (1.63e-4) − | 4.1468e-1 (4.65e-3) − | 4.3450e-1 (1.68e-4) − | 4.3516e-1 (8.30e-5) |
GTD | 2 | 4 | 4.8474e-1 (1.87e-4) + | 4.8394e-1 (5.68e-4) − | 4.8461e-1 (3.03e-5) − | 4.8107e-1 (9.50e-4) − | 4.8444e-1 (5.35e-5) − | 4.0931e-1 (2.75e-2) − | 4.8461e-1 (3.55e-5) − | 4.8470e-1 (3.86e-5) |
CSID | 3 | 7 | 2.5506e-2 (1.69e-4) − | 2.5595e-2 (1.28e-4) − | 2.6144e-2 (3.28e-5) ≈ | 2.2555e-2 (1.69e-3) − | 2.5705e-2 (9.76e-5) − | 2.0399e-2 (1.25e-4) − | 2.5863e-2 (5.83e-5) − | 2.6148e-2 (3.31e-5) |
1/4/0 | 0/5/0 | 0/4/1 | 0/5/0 | 0/5/0 | 0/5/0 | 0/5/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, Y.; Shao, Z.; Zeng, H.; Zhao, S. Dual-Population Cooperative Correlation Evolutionary Algorithm for Constrained Multi-Objective Optimization. Mathematics 2025, 13, 1441. https://doi.org/10.3390/math13091441
Chen J, Wang Y, Shao Z, Zeng H, Zhao S. Dual-Population Cooperative Correlation Evolutionary Algorithm for Constrained Multi-Objective Optimization. Mathematics. 2025; 13(9):1441. https://doi.org/10.3390/math13091441
Chicago/Turabian StyleChen, Junming, Yanxiu Wang, Zichun Shao, Hui Zeng, and Siyuan Zhao. 2025. "Dual-Population Cooperative Correlation Evolutionary Algorithm for Constrained Multi-Objective Optimization" Mathematics 13, no. 9: 1441. https://doi.org/10.3390/math13091441
APA StyleChen, J., Wang, Y., Shao, Z., Zeng, H., & Zhao, S. (2025). Dual-Population Cooperative Correlation Evolutionary Algorithm for Constrained Multi-Objective Optimization. Mathematics, 13(9), 1441. https://doi.org/10.3390/math13091441