Reconstructing Classical Algebras via Ternary Operations
Abstract
:1. Introduction
2. Preliminaries
- (T1)
- (T2)
- (T3)
- (T4) .
3. The Boolean Algebra
- (i)
- is a Boolean ring;
- (ii)
- is a Boolean algebra;
- (iii)
- ;
- (iv)
- ;
- (v)
- .
4. De Morgan Algebras
- (i)
- The system is a de Morgan algebra;
- (ii)
- The system is a distributive lattice;
- (iii)
- is a join-semilattice;
- (iv)
- is a meet-semilattice;
- (v)
- is an idempotent and commutative magma;
- (vi)
- is an idempotent and commutative magma;
- (vii)
- ;
- (viii)
- .
- (T5) and .
5. Rings and Near-Rings of Characteristic Two
- (i)
- is a unitary ring of characteristic 2;
- (ii)
- ;
- (iii)
- .
- (i)
- is a unitary (right) near ring of characteristic 2;
- (ii)
- ;
- (iii)
- ;
- (iv)
- .
6. MV-Algebra
- (M1) ;
- (M2) ;
- (M3) ;
- (M4) ;
- (M5) .
- and ;
- and ;
- ;
- is a distributive lattice;
- is a Boolean algebra ;
- and .
- (T1) ;
- (T2) ;
- (T3) ;
- (T4-1) ;
- (T4-2) and ;
- (TWV) .
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grau, A.A. Ternary Boolean algebras. Bull. Amer. Math. Soc. 1947, 53, 567–572. [Google Scholar] [CrossRef]
- Padmanabhan, R.; McCune, W. Single identities for ternary Boolean algebra. Comput. Math. Appl. 1995, 29, 13–16. [Google Scholar] [CrossRef]
- Birkhoff, G.; Kiss, S.A. A ternary operation in distributive lattices. Bull. Amer. Math. Soc. 1947, 53, 749–752. [Google Scholar] [CrossRef]
- Bandelt, H.-S.; Hedlícová, J. Median algebras. Discret. Math. 1983, 45, 1–30. [Google Scholar] [CrossRef]
- Sholander, M. Trees, lattice, order and betweenness. Proc. Amer. Math. Soc. 1952, 3, 369–381. [Google Scholar] [CrossRef]
- Isbell, J.R. Median Algebra. Trans. Amer. Math. Soc. 1980, 260, 319–362. [Google Scholar] [CrossRef]
- Church, A. Conditioned disjunction as a primitive connective for the prepositional calculus. Port. Math. 1948, 7, 87–90. [Google Scholar]
- Hoare, C.A.R. A couple of novelties in the propositional calculus. Z. Math. Logik Grundlag. Math. 1985, 31, 173–178. [Google Scholar] [CrossRef]
- Fatelo, J.P.; Martins-Ferreira, N. A new look at ternary Boolean algebras. arXiv 2021, arXiv:2109.06259. [Google Scholar]
- Fatelo, J.P.; Martins-Ferreira, N. A refinement of ternary Boolean algebras. arXiv 2022, arXiv:2203.08012. [Google Scholar]
- Cvetko-Vah, K.; Salibra, A. The connection of skew Boolean algebras and discriminator varieties to Church algebras. Algebra Universalis 2015, 73, 369–390. [Google Scholar] [CrossRef]
- Salibra, A.; Ledda, A.; Paoli, F.; Kowalski, T. Boolean-like algebras. Algebra Universalis 2013, 69, 113–138. [Google Scholar] [CrossRef]
- Dudek, W.A.; Trokhimenko, V.S. Algebra of Multiplace Functions; De Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Bergstra, J.A.; Ponse, A. Proposition algebra. ACM Trans. Comput. Logic 2011, 12, 1–36. [Google Scholar] [CrossRef]
- Fatelo, J.P.; Martins-Ferreira, N. Mobi algebra as an abstraction to the unit interval and its comparison to rings. Commun. Algebra 2019, 47, 1197–1214. [Google Scholar] [CrossRef]
- Fatelo, J.P.; Martins-Ferreira, N. Affine mobi spaces. Boll. Dell’Unione Mat. Ital. 2022, 15, 589–604. [Google Scholar] [CrossRef]
- Fatelo, J.P.; Martins-Ferreira, N. Mobi spaces and geodesics for the N-sphere. Cah. Topol. Géom. Différ. Catég. 2022, 63, 59–88. [Google Scholar]
- Martins-Ferreira, N. On distributive lattices and Weakly Mal’tsev categories. J. Pure Appl. Algebra 2012, 216, 1961–1963. [Google Scholar] [CrossRef]
- Birkhoff, G. Lattice Theory; American Mathematical Society: Providence, RI, USA, 1948; Volume 25. [Google Scholar]
- Belnap, N. A Useful Four-Valued Logic; Dunn, J.M., Epstein, G., Eds.; Modern Uses of Multi-Valued Logic; Reidel Dordrecht: Boston, UK, 1977; pp. 8–37. [Google Scholar]
- Font, J.M. Belnap’s Four-Valued Logic and De Morgan Lattices. Log. J. Igpl 1997, 5, 1–29. [Google Scholar] [CrossRef]
- Kalman, J.A. Lattices with involution. Trans. Amer. Math. Soc. 1958, 87, 485–491. [Google Scholar] [CrossRef]
- Lockhart, R. The theory of Near-Rings. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2021; Volume 2295. [Google Scholar]
- Fatelo, J.P.; Martins-Ferreira, N. Internal monoids and groups in the category of commutative cancellative medial magmas. Port. Math. 2016, 73, 219–245. [Google Scholar] [CrossRef]
- Kolařík, M. Independence of the axiomatic systems for a MV-algebras. Math. Slovaca 2013, 63, 1–4. [Google Scholar] [CrossRef]
- Cignoli, R.L.O.; D’Ottaviano, I.M.L.; Mundici, D. Algebraic Foundations of Many-Valued Reasoning; Trends in Logic; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Chajda, I.; Länger, H. Ring-Like Structures Corresponding to MV-Algebras via Symmetric Difference; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 2004; pp. 33–41. [Google Scholar]
T1–T3 | T4 | BC † | aa = a | LD * | |
---|---|---|---|---|---|
Boolean algebra | ✓ | ✓ | ✓ | ✓ | ✓ |
De Morgan algebra | ✓ | ✓ | × | ✓ | × |
MV-algebra | ✓ | × | ✓ | × | × |
Ring, char = 2 | ✓ | ✓ | × | × | ✓ |
Near ring, char = 2 | ✓ | ✓ | × | × | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatelo, J.P.; Martins-Ferreira, N. Reconstructing Classical Algebras via Ternary Operations. Mathematics 2025, 13, 1407. https://doi.org/10.3390/math13091407
Fatelo JP, Martins-Ferreira N. Reconstructing Classical Algebras via Ternary Operations. Mathematics. 2025; 13(9):1407. https://doi.org/10.3390/math13091407
Chicago/Turabian StyleFatelo, Jorge P., and Nelson Martins-Ferreira. 2025. "Reconstructing Classical Algebras via Ternary Operations" Mathematics 13, no. 9: 1407. https://doi.org/10.3390/math13091407
APA StyleFatelo, J. P., & Martins-Ferreira, N. (2025). Reconstructing Classical Algebras via Ternary Operations. Mathematics, 13(9), 1407. https://doi.org/10.3390/math13091407