Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs
Abstract
:1. Introduction
2. Main Result
3. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef]
- Ali, A.; Furtula, B.; Gutman, I.; Vukičević, D. Augmented Zagreb index: Extremal results and bounds. MATCH Commun. Math. Comput. Chem. 2021, 85, 211–244. [Google Scholar]
- Aarthi, K.; Elumalai, S.; Balachandran, S.; Mondal, S. Extremal values of the atom-bond sum-connectivity index in bicyclic graphs. J. Appl. Math. Comput. 2023, 69, 4269–4285. [Google Scholar] [CrossRef]
- Liu, H. Comparison between Merrifield-Simmons index and some vertex-degree-based topological indices. Comput. Appl. Math. 2023, 42, 89. [Google Scholar] [CrossRef]
- Liu, H. Extremal problems on Sombor indices of unicyclic graphs with a given diameter. Comput. Appl. Math. 2022, 41, 138. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y. Sharp bounds on the symmetric division deg index of graphs and line graphs. Comp. Appl. Math. 2023, 42, 285. [Google Scholar] [CrossRef]
- Maitreyi, V.; Elumalai, S.; Balachandran, S.; Liu, H. The minimum Sombor index of trees with given number of pendant vertices. Comp. Appl. Math. 2023, 42, 331. [Google Scholar] [CrossRef]
- Shegehalli, V.S.; Kanabur, R. Arithmetic-geometric indices of path graph. J. Comput. Math. Sci. 2015, 6, 19–24. [Google Scholar]
- Shegehalli, V.S.; Kanabur, R. Arithmetic-geometric indices of some class of graph. J. Comput. Math. Sci. 2015, 6, 194–199. [Google Scholar]
- Shegehalli, V.S.; Kanabur, R. Computation of new degree-based topological indices of graphene. J. Math. 2016, 2016, 4341919. [Google Scholar] [CrossRef]
- Milovanović, I.x.; Matejixcx, M.M.; Milovanovixcx, E.I. Upper bounds for arithmetic-geometric index of graphs. Sci. Publ. State Univ. Novi Pazar Ser. A Appl. Math. Inform. Mech. 2018, 10, 49–54. [Google Scholar] [CrossRef]
- Hertz, A.; Bonte, S.; Devillez, G.; Dusollier, V.; Mélot, H.; Schindl, D. Extremal chemical graphs for the arithmetic-geometric index. MATCH Commun. Math. Comput. Chem. 2025, 93, 791–818. [Google Scholar] [CrossRef]
- Vujošević, S.; Popivoda, G.; Vukixcxevixcx, x.K.; Furtula, B.; Škrekovski, R. Arithmetic-geometric index and its relations with geometric-arithmetic index. Appl. Math. Comput. 2021, 391, 125706. [Google Scholar] [CrossRef]
- Guo, X.; Gao, Y. Arithmetic-geometric spectral radius and energy of graphs. MATCH Commun. Math. Comput. Chem. 2020, 83, 651–660. [Google Scholar]
- Li, G.; Zhang, M. Sharp bounds on the arithmetic-geometric index of graphs and line graphs. Discrete Appl. Math. 2022, 318, 47–60. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Sánchez, J.L.; Sigarreta, J.M.; Tours, E. Bounds on the arithmetic-geometric index. Symmetry 2021, 13, 689. [Google Scholar] [CrossRef]
- Zheng, L.; Tian, G.X.; Cui, S.Y. On spectral radius and energy of arithmetic-geometric matrix of graphs. MATCH Commun. Math. Comput. Chem. 2020, 83, 635–650. [Google Scholar]
- Rada, J. Exponential vertex-degree-based topological indices and discrimination. MATCH Commun. Math. Comput. Chem. 2019, 82, 29–41. [Google Scholar]
- Cruz, R.; Monsalve, J.; Rada, J. Trees with maximum exponential Randić index. Discrete Appl. Math. 2020, 283, 634–643. [Google Scholar] [CrossRef]
- Cruz, R.; Rada, J. The path and the star as extremal values of vertex-degree-based topological indices among trees. MATCH Commun. Math. Comput. Chem. 2019, 82, 715–732. [Google Scholar]
- Das, K.C.; Elumalai, S.; Balachandran, S. Open problems on the exponential vertex-degree-based topological indices of graphs. Discrete Appl. Math. 2021, 293, 38–49. [Google Scholar] [CrossRef]
- Jahanbani, A.; Cancan, M.; Motamedi, R. Extremal Trees for the Exponential of Forgotten Topological Index. J. Math. 2022, 2022, 7455701. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S. On exponential geometric-arithmetic index of graphs. J. Math. Chem. 2024, 60, 205–217. [Google Scholar] [CrossRef]
- Balachandran, S.; Vetrík, T. Exponential second Zagreb index of chemical trees. Trans. Combin. 2021, 10, 97–106. [Google Scholar]
- Bera, J.; Das, K.C. The minimal molecular tree for the exponential Randić index. Mathematics 2024, 12, 3601. [Google Scholar] [CrossRef]
- Carballosa, W.; Quintana, Y.; Rodríguez, J.M.; Sigarreta, J.M. Exponential topological indices: Optimal inequalities and applications. J. Math. Chem. 2023, 61, 933–949. [Google Scholar] [CrossRef]
- Cruz, R.; Monsalve, J.; Rada, J. The balanced double star has maximum exponential second Zagreb index. J. Combin. Optim. 2021, 41, 544–552. [Google Scholar] [CrossRef]
- Cruz, R.; Rada, J. Extremal graphs for exponential VDB indices. Kragujev. J. Math. 2022, 46, 105–113. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S.; Huh, D.Y. On the exponential augmented Zagreb index of graphs. J. Appl. Math. Comput. 2024, 70, 839–865. [Google Scholar] [CrossRef]
- Moon, S.; Park, S. Bounds for the geometric-arithmetic index of unicyclic graphs. J. Appl. Math. Comput. 2023, 69, 2955–2971. [Google Scholar] [CrossRef]
- Vukićevixcx, X.K.; Vujoševixcx, S.; Popivoda, G. Unicyclic graphs with extremal values of arithmetic-geometric index. Discrete Appl. Math. 2021, 302, 67–75. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Q.; Zhang, H. Unicyclic graphs with extremal Lanzhou index. Appl. Math.—J. Chin. Univ. 2022, 37, 350–365. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S.; Huh, D. Open problem on the maximum exponential augmented Zagreb index of unicyclic graphs. Comput. Appl. Math. 2024, 43, 317. [Google Scholar] [CrossRef]
- Eliasi, M. Unicyclic and bicyclic graphs with maximum exponential second Zagreb index. Discrete Appl. Math. 2022, 307, 172–179. [Google Scholar] [CrossRef]
- Ali, A.; Alanazi, A.M.; Hassan, T.S.; Shang, Y. On unicyclic graphs with a given number of pendent vertices or matching number and their graphical edge-weight-function indices. Mathematics 2024, 12, 3658. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, Y. Extremal unicyclic graphs of Sombor index. Appl. Math. Comput. 2024, 463, 128374. [Google Scholar] [CrossRef]
- Cruz, R.; Rada, J.; Sanchez, W. Extremal unicyclic graphs with respect to vertex-degree-based topological indices. MATCH Commun. Math. Comput. Chem. 2022, 88, 481–503. [Google Scholar] [CrossRef]
- Das, K.C. On the exponential atom-bond connectivity index of graphs. Mathematics 2025, 13, 269. [Google Scholar] [CrossRef]
- Deng, H.; Vetrík, T.; Balachandran, S. On the harmonic index and diameter of unicyclic graphs. Math. Rep. 2020, 22, 11–18. [Google Scholar]
- Ergotić, S.M. On unicyclic graphs with minimum Graovac-Ghorbani index. Mathematics 2024, 12, 384. [Google Scholar] [CrossRef]
- Ning, W.; Wang, K. On the Estrada indices of unicyclic graphs with fixed diameters. Mathematics 2021, 9, 2395. [Google Scholar] [CrossRef]
- Nithyaa, P.; Elumalai, S.; Balachandran, S.; Masrec, M. Ordering unicyclic graphs with a fixed girth by Sombor indices. MATCH Commun. Math. Comput. Chem. 2024, 92, 205–224. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, Version 7.0; Wolfram Research, Inc.: Champaign, IL, USA, 2008. [Google Scholar]
- Stein, W.A. Sage Mathematics Software, Version 6.8. The Sage Development Team. 2015. Available online: http://www.sagemath.org (accessed on 21 April 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, K.C.; Bera, J. Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs. Mathematics 2025, 13, 1391. https://doi.org/10.3390/math13091391
Das KC, Bera J. Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs. Mathematics. 2025; 13(9):1391. https://doi.org/10.3390/math13091391
Chicago/Turabian StyleDas, Kinkar Chandra, and Jayanta Bera. 2025. "Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs" Mathematics 13, no. 9: 1391. https://doi.org/10.3390/math13091391
APA StyleDas, K. C., & Bera, J. (2025). Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs. Mathematics, 13(9), 1391. https://doi.org/10.3390/math13091391