Limit Theorems for the Non-Convex Multispecies Curie–Weiss Model
Abstract
:1. Introduction
2. Model Description and Definitions
3. Main Results
3.1. Thermodynamic Limit of the Generating Functional
3.2. Fluctuations of the Magnetization
4. Proofs
4.1. Proof of Theorem 1
4.2. Proof of Theorem 2
4.3. Proof of Theorem 3
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Technical Tools
Appendix B. Approximation Lemmas
References
- Kac, M. MATHEMATICAL MECHANISMS OF PHASE TRANSITIONS. In Statistical Physics, Phase Transitions, and Superfluidity; Chretien, M., Gross, E.P., Deser, S., Eds.; Gordon and Breach, Science Publishers: New York, NY, USA, 1968; Volume I, pp. 241–305. [Google Scholar]
- Kirsch, W.; Langner, J. The fate of the square root law for correlated voting. In Studies in Choice and Welfare; Springer International Publishing: Cham, Switzerland, 2014; pp. 147–158. [Google Scholar]
- Kirsch, W. A mathematical view on voting and power. In Mathematics and Society; EMS Press: Zuerich, Switzerland, 2016; pp. 251–279. [Google Scholar]
- Gsänger, M.; Hösel, V.; Mohamad-Klotzbach, C.; Müller, J. Opinion models, election data, and political theory. Entropy 2024, 26, 212. [Google Scholar] [CrossRef] [PubMed]
- Brock, W.A.; Durlauf, S.N. Discrete choice with social interactions. Rev. Econ. Stud. 2001, 68, 235–260. [Google Scholar] [CrossRef]
- Blume, L.; Durlauf, S. Equilibrium concepts for social interaction models. Int. Game Theory Rev. 2003, 5, 193–209. [Google Scholar] [CrossRef]
- Marsman, M.; Tanis, C.C.; Bechger, T.M.; Waldorp, L.J. Network psychometrics in educational practice: Maximum likelihood estimation of the Curie-Weiss model. In Theoretical and Practical Advances in Computer-based Educational Measurement; Springer International Publishing: Cham, Switzerland, 2019; pp. 93–120. [Google Scholar]
- Contucci, P.; Ghirlanda, S. Modelling society with statistical mechanics: An application to cultural contact and immigration. Qual. Quant. 2007, 41, 569–578. [Google Scholar] [CrossRef]
- Burioni, R.; Contucci, P.; Fedele, M.; Vernia, C.; Vezzani, A. Enhancing participation to health screening campaigns by group interactions. Sci. Rep. 2015, 5, 9904. [Google Scholar] [CrossRef]
- Opoku, A.A.; Osabutey, G.; Kwofie, C. Parameter evaluation for a statistical mechanical model for binary choice with social interaction. J. Probab. Stat. 2019, 2019, 3435626. [Google Scholar] [CrossRef]
- Frøyen, S.; Sudbø, A.S.; Hemmer, P. Ising models with two-and three-spin interactions: Mean field equation of state. Phys. A Stat. Mech. Its Appl. 1976, 85, 399–408. [Google Scholar] [CrossRef]
- Bidaux, R.; Boccara, N.; Forgàcs, G. Three-spin interaction Ising model with a nondegenerate ground state at zero applied field. J. Stat. Phys. 1986, 45, 113–134. [Google Scholar] [CrossRef]
- Kincaid, J.M.; Cohen, E.G.D. Phase diagrams of liquid helium mixtures and metamagnets: Experiment and mean field theory. Phys. Rep. 1975, 22, 57–143. [Google Scholar] [CrossRef]
- Galam, S.; Yokoi, C.S.O.; Salinas, S.R. Metamagnets in uniform and random fields. Phys. Rev. B 1998, 57, 8370–8374. [Google Scholar] [CrossRef]
- Gallo, I.; Contucci, P. Bipartite mean field spin systems. Existence and solution. Math. Phys. Electron. J. 2008, 14, 1–21. [Google Scholar]
- Genovese, G.; Barra, A. A certain class of Curie-Weiss models. arXiv 2009, arXiv:0906.4673. [Google Scholar]
- Barra, A.; Genovese, G.; Guerra, F. Equilibrium statistical mechanics of bipartite spin systems. J. Phys. A Math. Theor. 2011, 44, 245002. [Google Scholar] [CrossRef]
- Genovese, G.; Tantari, D. Non-convex multipartite ferromagnets. J. Stat. Phys. 2016, 163, 492–513. [Google Scholar] [CrossRef]
- Fedele, M.; Contucci, P. Scaling limits for multi-species statistical mechanics mean-field models. J. Stat. Phys. 2011, 144, 1186–1205. [Google Scholar] [CrossRef]
- Ellis, R.S.; Newman, C.M. The statistics of Curie-Weiss models. J. Stat. Phys. 1978, 19, 149–161. [Google Scholar] [CrossRef]
- Löwe, M.; Schubert, K. Fluctuations for block spin Ising models. Electron. Commun. Probab. 2018, 23, 1–12. [Google Scholar] [CrossRef]
- Knöpfel, H.; Löwe, M.; Schubert, K.; Sinulis, A. Fluctuation results for general block spin Ising models. J. Stat. Phys. 2020, 178, 1175–1200. [Google Scholar] [CrossRef]
- Kirsch, W.; Toth, G. Two groups in a Curie-Weiss model. Math. Phys. Anal. Geom. 2020, 23, 17. [Google Scholar] [CrossRef]
- Fleermann, M.; Kirsch, W.; Toth, G. Local central limit theorem for multi-group Curie–Weiss models. J. Theor. Probab. 2022, 35, 2009–2019. [Google Scholar] [CrossRef]
- Kirsch, W.; Toth, G. Limit theorems for multi-group Curie–Weiss models via the method of moments. Math. Phys. Anal. Geom. 2022, 25, 24. [Google Scholar] [CrossRef]
- Barra, A.; Contucci, P.; Mingione, E.; Tantari, D. Multi-species mean field spin glasses. Rigorous results. In Proceedings of the Annales Henri Poincaré; Springer: Basel, Switzerland, 2015; Volume 16, pp. 691–708. [Google Scholar] [CrossRef]
- Panchenko, D. The free energy in a multi-species Sherrington–Kirkpatrick model. Ann. Probab. 2015, 43, 3494–3513. [Google Scholar] [CrossRef]
- Baik, J.; Lee, J.O. Free energy of bipartite spherical Sherrington–Kirkpatrick model. Ann. Inst. Henri Poincaré 2020, 56, 2897–2934. [Google Scholar] [CrossRef]
- Subag, E. TAP approach for multispecies spherical spin glasses II: The free energy of the pure models. Ann. Probab. 2023, 51, 1004–1024. [Google Scholar] [CrossRef]
- Alberici, D.; Camilli, F.; Contucci, P.; Mingione, E. The Multi-species Mean-Field Spin-Glass on the Nishimori Line. J. Stat. Phys. 2021, 182, 2. [Google Scholar] [CrossRef]
- Alberici, D.; Camilli, F.; Contucci, P.; Mingione, E. The Solution of the Deep Boltzmann Machine on the Nishimori Line. Commun. Math. Phys. 2021, 387, 1191–1214. [Google Scholar] [CrossRef]
- Mourrat, J.C. Nonconvex interactions in mean-field spin glasses. arXiv 2020, arXiv:2004.01679. [Google Scholar]
- Hong-Bin Chen, J.C.M. On the free energy of vector spin glasses with non-convex interactions. arXiv 2023, arXiv:2311.08980. [Google Scholar]
- Guerra, F.; Lucio Toninelli, F. Central limit theorem for fluctuations in the high temperature region of the Sherrington–Kirkpatrick spin glass model. J. Math. Phys. 2002, 43, 6224–6237. [Google Scholar] [CrossRef]
- Guerra, F.; Toninelli, F.L. Quadratic replica coupling in the Sherrington–Kirkpatrick mean field spin glass model. J. Math. Phys. 2002, 43, 3704–3716. [Google Scholar] [CrossRef]
- Talagrand, M. Spin Glasses: A Challenge for Mathematicians: Cavity and Mean Field Models; Springer: Berlin/Heidelberg, Germany; Springer Science & Business Media: New York, NY, USA, 2003; Volume 46. [Google Scholar]
- Camilli, F.; Contucci, P.; Mingione, E. Central limit theorem for the overlaps on the Nishimori line. arXiv 2023, arXiv:2305.19943. [Google Scholar]
- Dey, P.; Wu, Q. Fluctuation Results for Multi-species Sherrington-Kirkpatrick Model in the Replica Symmetric Regime. J. Stat. Phys. 2021, 185. [Google Scholar] [CrossRef]
- Zimmaro, F.; Galam, S.; Javarone, M.A. Asymmetric games on networks: Mapping to Ising models and bounded rationality. Chaos Solitons Fractals 2024, 181, 114666. [Google Scholar] [CrossRef]
- Agliari, E.; Migliozzi, D.; Tantari, D. Non-convex multi-species Hopfield models. J. Stat. Phys. 2018, 172, 1247–1269. [Google Scholar] [CrossRef]
- Contucci, P.; Vernia, C. On a statistical mechanics approach to some problems of the social sciences. Front. Phys. 2020, 8, 585383. [Google Scholar] [CrossRef]
- Ignacio, G.; Barra, A.; Contucci, P. Parameter evaluation of a simple mean-field model of social interaction. Math. Models Methods Appl. Sci 2009, 19, 1427–1439. [Google Scholar]
- Mukherjee, S.; Son, J.; Bhattacharya, B.B. Fluctuations of the magnetization in the p-spin Curie-Weiss model. Comm. Math. Phys. 2021, 387, 681–728. [Google Scholar] [CrossRef]
- Contucci, P.; Mingione, E.; Osabutey, G. Limit theorems for the cubic mean-field Ising model. Ann. Henri Poincare 2024, 25, 5019–5044. [Google Scholar] [CrossRef]
- Dembo, A.; Zeitouni, O. Large Deviations Techniques and Applications; Springer: Berlin, Germany, 2010. [Google Scholar]
- Opoku, A.A.; Osabutey, G. Multipopulation spin models: A view from large deviations theoretic window. J. Math. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Eisele, T.; Ellis, R.S. Multiple phase transitions in the generalized Curie-Weiss model. J. Stat. Phys. 1988, 52, 161–202. [Google Scholar] [CrossRef]
- Collet, F. Macroscopic limit of a bipartite Curie–Weiss model: A dynamical approach. J. Stat. Phys. 2014, 157, 1301–1319. [Google Scholar] [CrossRef]
- Fedele, M.; Unguendoli, F. Rigorous results on the bipartite mean-field model. J. Phys. A Math. Theor. 2012, 45, 385001. [Google Scholar] [CrossRef]
- Zhao, K.; Bianconi, G. Percolation on interdependent networks with a fraction of antagonistic interactions. J. Stat. Phys. 2013, 152, 1069–1083. [Google Scholar] [CrossRef]
- Andreis, L.; Tovazzi, D. Coexistence of stable limit cycles in a generalized Curie–Weiss model with dissipation. J. Stat. Phys. 2018, 173, 163–181. [Google Scholar] [CrossRef]
- Ayi, N.; Pouradier Duteil, N. Mean-field and graph limits for collective dynamics models with time-varying weights. J. Differ. Equations 2021, 299, 65–110. [Google Scholar] [CrossRef]
- Giacomin, G.; Poquet, C. Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors. Brazilian Jounal of Probab. Stat 2015, 29, 460–493. [Google Scholar]
- Collet, F.; Formentin, M.; Tovazzi, D. Rhythmic behavior in a two-population mean-field Ising model. Phys. Rev. E 2016, 94, 042139. [Google Scholar] [CrossRef]
- Salwinski, D. The Continuous Binomial Coefficient: An Elementary Approach. Am. Math. Mon. 2018, 125, 231–244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camilli, F.; Mingione, E.; Osabutey, G. Limit Theorems for the Non-Convex Multispecies Curie–Weiss Model. Mathematics 2025, 13, 1343. https://doi.org/10.3390/math13081343
Camilli F, Mingione E, Osabutey G. Limit Theorems for the Non-Convex Multispecies Curie–Weiss Model. Mathematics. 2025; 13(8):1343. https://doi.org/10.3390/math13081343
Chicago/Turabian StyleCamilli, Francesco, Emanuele Mingione, and Godwin Osabutey. 2025. "Limit Theorems for the Non-Convex Multispecies Curie–Weiss Model" Mathematics 13, no. 8: 1343. https://doi.org/10.3390/math13081343
APA StyleCamilli, F., Mingione, E., & Osabutey, G. (2025). Limit Theorems for the Non-Convex Multispecies Curie–Weiss Model. Mathematics, 13(8), 1343. https://doi.org/10.3390/math13081343