Theoretical Analysis on a Diffusive SIS Epidemic Model with Logistic Source, Saturated Incidence Rate and Spontaneous Infection Mechanism †
Abstract
:1. Introduction
2. Uniform Boundedness and Global Stability
3. The Existence of Endemic Equilibrium
4. Asymptotic Profiles of Endemic Equilibrium
4.1. Small Dispersal
4.2. Large Dispersal
4.3. Large Saturation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Brauer, F.; Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology; Springer: New York, NY, USA, 2000. [Google Scholar]
- Diekmann, O.; Heesterbeek, J.A.P. Mathematical Epidemiology of Infective Diseases: Model Building, Analysis and Interpretation; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef]
- Martcheva, M. An Introduction to Mathematical Epidemiology; Springer: New York, NY, USA, 2015. [Google Scholar]
- Allen, L.J.S.; Bolker, B.M.; Lou, Y.; Nevai, A.L. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. 2008, 21, 1–20. [Google Scholar] [CrossRef]
- Peng, R. Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I. J. Differ. Equ. 2009, 247, 1096–1119. [Google Scholar] [CrossRef]
- Peng, R.; Liu, S. Global stability of the steady states of an SIS epidemic reaction-diffusion model. Nonlinear Anal. 2009, 71, 239–247. [Google Scholar] [CrossRef]
- Peng, R.; Yi, F. Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement. Physica D Nonlinear Phenom. 2013, 259, 8–25. [Google Scholar] [CrossRef]
- Deng, K.; Wu, Y. Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model. Proc. R. Soc. Edinb. Sect. A 2016, 146, 929–946. [Google Scholar] [CrossRef]
- Wen, X.; Ji, J.; Li, B. Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism. J. Math. Anal. Appl. 2018, 458, 715–729. [Google Scholar] [CrossRef]
- Wu, Y.; Zou, X. Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equ. 2016, 261, 4424–4447. [Google Scholar] [CrossRef]
- Wang, Y.-E.; Wang, Z.; Lei, C. Existence and asymptotic profile of endemic equilibrium to a diffusive epidemic model with saturated incidence rate. Math. Biosci. Eng. 2019, 16, 3885–3913. [Google Scholar] [CrossRef]
- Chen, X.; Cui, R. Qualitative analysis on a spatial SIS epidemic model with linear source in advective environments: I. Standard incidence. Z. Angew. Math. Phys. 2022, 73, 150. [Google Scholar] [CrossRef]
- Chen, X.; Cui, R. Analysis on a spatial SIS epidemic model with saturated incidence function in advective environments: I. Conserved total population. SIAM J. Appl. Math. 2023, 83, 2522–2544. [Google Scholar] [CrossRef]
- Chen, X.; Cui, R. Analysis on a spatial SIS epidemic model with saturated incidence function in advective environments: II. Varying total population. J. Differ. Equ. 2024, 402, 328–360. [Google Scholar] [CrossRef]
- Cui, R. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete Contin. Dyn. Syst. Ser. B 2021, 26, 2997–3022. [Google Scholar] [CrossRef]
- Cui, R.; Lam, K.-Y.; Lou, Y. Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equ. 2017, 263, 2343–2373. [Google Scholar] [CrossRef]
- Cui, R.; Lou, Y. A spatial SIS model in advective heterogeneous environments. J. Differ. Equ. 2016, 261, 3305–3343. [Google Scholar] [CrossRef]
- Ge, J.; Kim, K.I.; Lin, Z.; Zhu, H. A SIS reaction-diffusion-advection model in a low-risk and high-risk domain. J. Differ. Equ. 2015, 259, 5486–5509. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, Z.-C.; Zhang, L. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 2018, 23, 4557–4578. [Google Scholar] [CrossRef]
- Kuto, K.; Matsuzawa, H.; Peng, R. Concentration profile of endemic equilibrium of a reaction-diffusion-advection SIS epidemic model. Calc. Var. Partial Differ. Equ. 2017, 56, 112–128. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, R. Asymptotic behavior of an SIS reaction-diffusion-advection model with saturation and spontaneous infection mechanism. Z. Angew. Math. Phys. 2020, 71, 150. [Google Scholar] [CrossRef]
- Deng, K. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete Contin. Dyn. Syst. Ser. B 2019, 24, 5945–5957. [Google Scholar] [CrossRef]
- Ding, W.; Huang, W.; Kansakar, S. Traveling wave solutions for a diffusive SIS epidemic model. Discrete Contin. Dyn. Syst. Ser. B 2013, 18, 1291–1304. [Google Scholar] [CrossRef]
- Huo, X.; Cui, R. A reaction-diffusion SIS epidemic model with saturated incidence rate and logistic source. Appl. Anal. 2020, 101, 4492–4511. [Google Scholar] [CrossRef]
- Lei, C.; Li, F.; Liu, J. Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 2018, 23, 4499–4517. [Google Scholar] [CrossRef]
- Li, B.; Li, H.; Tong, Y. Analysis on a diffusive SIS epidemic model with logistic source. Z. Angew. Math. Phys. 2017, 68, 68–96. [Google Scholar] [CrossRef]
- Li, H.; Peng, R.; Wang, F.-B. Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 2017, 262, 885–913. [Google Scholar] [CrossRef]
- Li, H.; Peng, R.; Wang, Z.-A. On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms. SIAM J. Appl. Math. 2018, 78, 2129–2153. [Google Scholar] [CrossRef]
- Sun, X.; Cui, R. Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogeneous environment. J. Math. Anal. Appl. 2020, 490, 124212. [Google Scholar] [CrossRef]
- Hill, A.; Rand, D.G.; Nowak, M.A.; Christakis, N.A. Emotions as infectious diseases in a large social network: The SIS model. Proc. R. Soc. B 2010, 277, 3827–3835. [Google Scholar] [CrossRef]
- Hill, A.; Rand, D.G.; Nowak, M.A.; Christakis, N.A. Infectious disease modeling of social contagion in networks. PLoS Comput. Biol. 2010, 6, e1000968. [Google Scholar] [CrossRef]
- Lei, C.; Xiong, J.; Zhou, X. Qualitative analysis on an SIS Epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 2020, 25, 81–98. [Google Scholar] [CrossRef]
- Sun, X.; Cui, R. Existence and asymptotic profiles of the steady state for a diffusive epidemic model with saturated incidence and spontaneous infection mechanism. Discrete Contin. Dyn. Syst. Ser. 2021, 14, 4503–4520. [Google Scholar] [CrossRef]
- Tong, Y.; Lei, C. An SIS epidemic reaction-diffusion model with spontaneous infection in a spatially heterogeneous environment. Nonlinear Anal. Real World Appl. 2018, 41, 443–460. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, R. Qualitative analysis on a diffusive SIS epidemic system with logistic source and spontaneous infection in a heterogeneous environment. Nonlinear Anal. Real World Appl. 2020, 55, 103115. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, R. Asymptotic profiles of the endemic equilibrium of a diffusive SIS epidemic system with saturated incidence rate and spontaneous infection. Math. Methods Appl. Sci. 2021, 44, 517–532. [Google Scholar] [CrossRef]
- Alikakos, N. Lp bounds of solutions of reaction-diffusion equation. Commun. Partial Differ. Equ. 1979, 4, 827–868. [Google Scholar] [CrossRef]
- Brown, K.J.; Dunne, P.C.; Gardner, R.A. A semilinear parabolic system arising in the theory of superconductivity. J. Differ. Equ. 1981, 40, 232–252. [Google Scholar] [CrossRef]
- Chen, X.; Cui, R. Global stability in a diffusive cholera epidemic model with nonlinear incidence. Appl. Math. Lett. 2021, 101, 106596. [Google Scholar] [CrossRef]
- Lou, Y.; Ni, W.-M. Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 1996, 131, 79–131. [Google Scholar] [CrossRef]
- Nirenberg, L. Topic in Nonlinear Functional Nnalysis; American Mathematical Society: Providence, RI, USA, 1970. [Google Scholar]
- Lou, Y. On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 2006, 223, 400–426. [Google Scholar] [CrossRef]
- Du, Y.; Peng, R.; Wang, M. Effect of a protection zone in the diffusive Leslie predator-prey model. J. Differ. Equ. 2009, 246, 3932–3956. [Google Scholar] [CrossRef]
- Cantrell, R.; Cosner, C. Spatial Ecology via Reaction-Diffusion Equations; Ser. Math. 17 Comput. Biology; Wiley: Chichester, UK, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, J.; Huo, X. Theoretical Analysis on a Diffusive SIS Epidemic Model with Logistic Source, Saturated Incidence Rate and Spontaneous Infection Mechanism. Mathematics 2025, 13, 1244. https://doi.org/10.3390/math13081244
Zhang H, Zhang J, Huo X. Theoretical Analysis on a Diffusive SIS Epidemic Model with Logistic Source, Saturated Incidence Rate and Spontaneous Infection Mechanism. Mathematics. 2025; 13(8):1244. https://doi.org/10.3390/math13081244
Chicago/Turabian StyleZhang, Hongmin, Jian Zhang, and Xin Huo. 2025. "Theoretical Analysis on a Diffusive SIS Epidemic Model with Logistic Source, Saturated Incidence Rate and Spontaneous Infection Mechanism" Mathematics 13, no. 8: 1244. https://doi.org/10.3390/math13081244
APA StyleZhang, H., Zhang, J., & Huo, X. (2025). Theoretical Analysis on a Diffusive SIS Epidemic Model with Logistic Source, Saturated Incidence Rate and Spontaneous Infection Mechanism. Mathematics, 13(8), 1244. https://doi.org/10.3390/math13081244