Pontryagin’s Principle-Based Algorithms for Optimal Control Problems of Parabolic Equations
Abstract
1. Introduction
2. Preliminary Results
2.1. Problem Setting
- 1.
 - The function :- For every , is measurable on .- For almost every , is continuous on .- For almost every and every , is of class on .- For almost every ,
 - 2.
 - The function :- For every , is measurable on Ω.- For almost every , is continuous on and is of class on .- For almost every ,
 - 3.
 - The function :- For every , is measurable on .- For almost every , is continuous on .- For almost every and every , is of class on .- For almost every ,
 - 4.
 - The function :- For every , is measurable on .- For almost every , is continuous on .- For almost every and every , is of class on .- For almost every ,
 
2.2. Pontryagin’s Principle
3. Method of Successive Approximations
3.1. Basic MSA
| Algorithm 1: Basic MSA | 
![]()  | 
3.2. Error Estimate
3.3. Augmented MSA
| Algorithm 2: Augmented MSA | 
![]()  | 
3.4. Convergence of Algorithm
4. Numerical Tests
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MSA | Method of Successive Approximations | 
| HJB | Hamilton–Jacobi–Bellman | 
| AMSA | Augmented Method of Successive Approximations | 
| IPM | Interior Point Method | 
| CM | Configuration Method | 
| SA | Simulated Annealing | 
| GD | Gradient Descent | 
References
- Bardi, M.; Capuzzo-Dolcetta, I. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations; With Appendices by Maurizio Falcone and Pierpaolo Soravia; Systems & Control: Foundations & Applications; Birkhäuser Boston, Inc.: Boston, MA, USA, 1997; p. xviii+570. [Google Scholar] [CrossRef]
 - Falcone, M.; Ferretti, R. Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2014; p. xii+319. [Google Scholar]
 - Casas, E. Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 1997, 35, 1297–1327. [Google Scholar] [CrossRef]
 - Raymond, J.P.; Zidani, H. Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 1999, 39, 143–177. [Google Scholar] [CrossRef]
 - Kang, W.; Wilcox, L.C. Mitigating the curse of dimensionality: Sparse grid characteristics method for optimal feedback control and HJB equations. Comput. Optim. Appl. 2017, 68, 289–315. [Google Scholar] [CrossRef]
 - Stefansson, E.; Leong, Y.P. Sequential alternating least squares for solving high dimensional linear Hamilton-Jacobi-Bellman equation. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 3757–3764. [Google Scholar] [CrossRef]
 - Beard, R.W.; Saridis, G.N.; Wen, J.T. Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica J. IFAC 1997, 33, 2159–2177. [Google Scholar] [CrossRef]
 - Beard, R.W.; Saridis, G.N.; Wen, J.T. Approximate solutions to the time-invariant Hamilton-Jacobi-Bellman equation. J. Optim. Theory Appl. 1998, 96, 589–626. [Google Scholar] [CrossRef]
 - Beeler, S.C.; Tran, H.T.; Banks, H.T. Feedback control methodologies for nonlinear systems. J. Optim. Theory Appl. 2000, 107, 1–33. [Google Scholar] [CrossRef]
 - Kalise, D.; Kunisch, K. Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs. SIAM J. Sci. Comput. 2018, 40, A629–A652. [Google Scholar] [CrossRef]
 - Alla, A.; Falcone, M.; Kalise, D. An efficient policy iteration algorithm for dynamic programming equations. SIAM J. Sci. Comput. 2015, 37, A181–A200. [Google Scholar] [CrossRef]
 - Bokanowski, O.; Maroso, S.; Zidani, H. Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 2009, 47, 3001–3026. [Google Scholar] [CrossRef]
 - Howard, R.A. Dynamic Programming and Markov Processes; Technology Press of M.I.T.: Cambridge, MA, USA; John Wiley & Sons, Inc.: New York, NY, USA; London, UK, 1960; p. viii+136. [Google Scholar]
 - Bryson, A.E., Jr.; Ho, Y.C. Applied Optimal Control: Optimization, Estimation, and Control; Revised Printing; Hemisphere Publishing Corp.: Washington, DC, USA; Distributed by Halsted Press [John Wiley & Sons, Inc.]: New York, NY, USA; London, UK; Sydney, Australia, 1975; p. xiv+481. [Google Scholar]
 - Roberts, S.M.; Shipman, J.S. Two-point boundary value problems: Shooting methods. In Modern Analytic and Computational Methods in Science and Mathematics; American Elsevier Publishing Co., Inc.: New York, NY, USA, 1972; Volume 31, p. xiv+277. [Google Scholar]
 - Betts, J.T.; Frank, P.D. A sparse nonlinear optimization algorithm. J. Optim. Theory Appl. 1994, 82, 519–541. [Google Scholar] [CrossRef]
 - Betts, J.T. Experience with a sparse nonlinear programming algorithm. In Large-Scale Optimization with Applications, Part II (Minneapolis, MN, 1995); Springer: New York, NY, USA, 1997; Volume 93, pp. 53–72. [Google Scholar] [CrossRef]
 - Bertsekas, D.P. Nonlinear Programming, 2nd ed.; Athena Scientific Optimization and Computation Series; Athena Scientific: Belmont, MA, USA, 1999; p. xiv+777. [Google Scholar]
 - Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M. Nonlinear Programming, 3rd ed.; Theory and Algorithms; Wiley-Interscience [John Wiley & Sons]: Hoboken, NJ, USA, 2006; p. xvi+853. [Google Scholar] [CrossRef]
 - Chernous‘ko, F.L.; Lyubushin, A.A. Method of successive approximations for solution of optimal control problems. Optimal Control Appl. Methods 1982, 3, 101–114. [Google Scholar] [CrossRef]
 - Li, Q.; Chen, L.; Tai, C. Maximum principle based algorithms for deep learning. J. Mach. Learn. Res. 2017, 18, 1–29. [Google Scholar]
 - Hestenes, M.R. Multiplier and gradient methods. J. Optim. Theory Appl. 1969, 4, 303–320. [Google Scholar] [CrossRef]
 - Sethi, D.; Šiška, D. The modified MSA, a gradient flow and convergence. Ann. Appl. Probab. 2024, 34, 4455–4492. [Google Scholar] [CrossRef]
 - Aleksandrov, V.V. On the accumulation of perturbations in the linear systems with two coordinates. Vestn. MGU 1968, 3, 67–76. [Google Scholar]
 




| Time Step Size | Space Step Size | Computation Time (s) | Maximum Memory Usage (MB) | 
|---|---|---|---|
| 0.1 | 0.1 | 0.4888 | 68.09 | 
| 0.05 | 0.05 | 0.6886 | 69.15 | 
| 0.025 | 0.025 | 17.4842 | 75.84 | 
| 0.0125 | 0.0125 | 170.6029 | 116.42 | 
| Method | Computation Time (s) | Maximum Memory Usage (MB) | Objective Function J | 
|---|---|---|---|
| GD | 17.4842 | 75.84 | 0.00105496 | 
| SA | 0.3079 | 75.95 | 0.00033848 | 
| Method | Computation Time (s) | Maximum Memory Usage (MB) | Objective Function J | 
|---|---|---|---|
| IPM | 54.7279 | 1392.05 | 0.00055791 | 
| CM | 2.5713 | 128.82 | 0.00401861 | 
| AMSA (SA) | 0.0206 | 68.64 | 0.00195774 | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, W.; Zhang, F. Pontryagin’s Principle-Based Algorithms for Optimal Control Problems of Parabolic Equations. Mathematics 2025, 13, 1143. https://doi.org/10.3390/math13071143
You W, Zhang F. Pontryagin’s Principle-Based Algorithms for Optimal Control Problems of Parabolic Equations. Mathematics. 2025; 13(7):1143. https://doi.org/10.3390/math13071143
Chicago/Turabian StyleYou, Weilong, and Fu Zhang. 2025. "Pontryagin’s Principle-Based Algorithms for Optimal Control Problems of Parabolic Equations" Mathematics 13, no. 7: 1143. https://doi.org/10.3390/math13071143
APA StyleYou, W., & Zhang, F. (2025). Pontryagin’s Principle-Based Algorithms for Optimal Control Problems of Parabolic Equations. Mathematics, 13(7), 1143. https://doi.org/10.3390/math13071143
        
                                                

