A Review of the Chebyshev Inequality Pertaining to Fractional Integrals
Abstract
:1. Introduction
2. Inequalities
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
- Bhat, M.A.; Kosuru, G.S.R. Generalizations of some concentration inequalities. Stat. Probab. Lett. 2022, 182, 109298. [Google Scholar] [CrossRef]
- Hürlimann, W. An Improved Laguerre-Samuelson Inequality of Chebyshev-Markov Type. J. Optim. 2014, 2014, 832123. [Google Scholar] [CrossRef]
- Liu, R.; Wen, J.; Zhao, L. Chebyshev–Jensen-Type Inequalities Involving χ-Products and Their Applications in Probability Theory. Mathematics 2024, 12, 1495. [Google Scholar] [CrossRef]
- Ogasawara, H. The multivariate Markov and multiple Chebyshev inequalities. Comm. Statist. Theory Methods 2020, 49, 441–453. [Google Scholar] [CrossRef]
- Arunrat, N.; Nakprasit, K.M.; Nonlaopon, K.; Agarwal, P.; Ntouyas, S.K. Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions. Mathematics 2022, 10, 468. [Google Scholar] [CrossRef]
- Brahim, K.; Taf, S. On some fractional q-Integral inequalities. Malaya J. Mat. 2013, 3, 21–26. [Google Scholar] [CrossRef]
- Ajega-Akem, S.N.; Iddrisu, M.M.; Nantomah, K. Some Chebyshev type inequalities on time scales. J. Math. Anal. Model. 2024, 5, 53–63. [Google Scholar]
- Akin, L. On the Fractional Maximal Delta Integral Type Inequalities on Time Scales. Fractal Fract. 2020, 4, 26. [Google Scholar] [CrossRef]
- Jeong, S.E. A Note on a Moment Inequality. B.E. J. Theor. Econ. 2024, 24, 435–440. [Google Scholar] [CrossRef]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. JIPAM J. Inequal. Pure Appl. Math. 2009, 10, 86. [Google Scholar]
- Dahmani, Z. About some integral inequalities using Riemann-Liouville integrals. Gen. Math. 2012, 20, 63–69. [Google Scholar]
- Dahmani, Z.; Khameli, A.; Freha, K. Fractional integral Chebyshev inequality without synchronous functions condition. Malaya J. Mat. 2016, 4, 448–452. [Google Scholar] [CrossRef]
- Dahmani, Z.; Mechouar, O.; Brahami, S. Certain inequalities related to the Chebyshev’s functional involving a Riemann-Liouville operator. Bull. Math. Anal. Appl. 2011, 3, 38–44. [Google Scholar]
- Chinchane, V.L.; Pachpatte, D.B. A note on some fractional integral inequalities via Hadamard integral. J. Fract. Calc. Appl. 2013, 4, 125–129. [Google Scholar]
- Ntouyas, S.K.; Purohit, S.D.; Tariboon, J. Certain Chebyshev Type Integral Inequalities Involving Hadamard’s Fractional Operators. Abstr. Appl. Anal. 2014, 2014, 249091. [Google Scholar] [CrossRef]
- Set, E.; Kashuri, A.; Mumcu, I. Chebyshev type inequalities by using generalized proportional Hadamard fractional integrals via Polya–Szegö inequality with applications. Chaos Solitons Fractals 2021, 146, 110860. [Google Scholar] [CrossRef]
- Chinchane, V.L.; Nale, A.B.; Panchal, S.K.; Chesneau, C. On Some Fractional Integral Inequalities Involving Caputo–Fabrizio Integral Operator. Axioms 2021, 10, 255. [Google Scholar] [CrossRef]
- Dubey, R.S.; Goswami, P. Some fractional integral inequalities for the Katugampola integral operator. AIMS Math. 2019, 4, 193–198. [Google Scholar] [CrossRef]
- Set, E.; Mumcu, I.; Demirbas, S. Conformable fractional integral inequalities of Chebyshev type. RACSAM 2019, 113, 2253–2259. [Google Scholar] [CrossRef]
- Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for (k,h)-Riemann-Liouville fractional integral. New Trends Math. Sci. 2016, 4, 138–146. [Google Scholar] [CrossRef]
- Bezziou, M.; Dahmani, Z.; Sarikaya, M.Z. The (k,s,h)-Riemann-Liouville and the (k,s)-Hadamard Operators. J. Math. Ext. 2022, 16, 10. [Google Scholar] [CrossRef]
- Halim, B.; Senouci, A.; Sofrani, M. Some Chebyshev type inequalities for generalized Riemann-Liouville operator. Ufa Math. J. 2020, 12, 88–96. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Dahmani, Z.; Kiris, M.E.; Ahmad, F. (k,s)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Varosanec, S. New Chebyshev-type inequalities for the generalized Riemann-Liouville fractional integral with respect to an increasing function. J. Math. Inequal. 2023, 17, 1351–1361. [Google Scholar] [CrossRef]
- Baleanu, D.; Purohit, S.D.; Prajapati, J.C. Integral inequalities involving generalized Erdélyi-Kober fractional integral operators. Open Math. 2016, 14, 89–99. [Google Scholar] [CrossRef]
- Purohit, S.D.; Kalla, S.L. Certain inequalities related to the Chebyshev’s functional involving Erdélyi-Kober operators. Sci. Ser. A Math. Sci. 2014, 25, 55–63. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Chebyshev type inequalities for the Saigo fractional integrals and their q-analogues. J. Math. Inequal. 2013, 7, 239–249. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Karaoglan, A. New integral inequalities for synchronous functions via Atangana–Baleanu fractional integral operators. Chaos Solitons Fractals 2024, 186, 115193. [Google Scholar] [CrossRef]
- Usta, F.; Budak, H.; Sarikaya, M.Z. On Chebychev type inequalities for fractional integral operators. AIP Conf. Proc. 2017, 1833, 020045. [Google Scholar] [CrossRef]
- Alan, E.A.; Celik, B.; Set, E.; Dahmani, Z. On new Chebyshev inequalities via fractional operators. Miskolc Math. Notes 2021, 22, 557–569. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Alsharif, A.M.; Guirao, J.L. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Math. 2021, 6, 11167–11186. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Mohammed, P.O.; Hamed, Y.S.; Kashuri, A.; Hernández, J.E.; Macías-Díaz, J.E. On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities. AIMS Math. 2022, 7, 10256–10275. [Google Scholar] [CrossRef]
- Ahmad, A.; Anwar, M. Refinements of Pólya-Szegö and Chebyshev type inequalities via different fractional integral operators. Heliyon 2024, 10, e35057. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
- Baleanu, D.; Purohit, S.D. Chebyshev Type Integral Inequalities Involving the Fractional Hypergeometric Operators. Abstr. Appl. Anal. 2014, 2014, 609160. [Google Scholar] [CrossRef]
- Celik, B.; Set, E. On new integral inequalities using mixed conformable fractional integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 1057–1069. [Google Scholar] [CrossRef]
- Chinchane, V.L. On Chebyshev Type Inequalities Using Generalized k-Fractional Integral Operator. Progr. Fract. Differ. Appl. 2017, 3, 219–226. [Google Scholar] [CrossRef]
- Guzmán, P.M.; Kórus, P.; Nápoles Valdés, J.E. Generalized Integral Inequalities of Chebyshev Type. Fractal Fract. 2020, 4, 10. [Google Scholar] [CrossRef]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L.; Al-Bayatti, H.M.Y. Fractional Integral Inequalities Using Marichev-Saigo-Maeda Fractional Integral Operator. Progr. Fract. Differ. Appl. 2021, 7, 249–255. [Google Scholar] [CrossRef]
- Nápoles Valdés, J.E.; Rabossi, F. A note on Chebyshev inequality via k-generalized fractional integrals. Electron. J. Math. 2021, 1, 41–51. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T.; Samraiz, M. Some New Tempered Fractional Pólya-Szegö and Chebyshev-Type Inequalities with Respect to Another Function. J. Math. 2020, 2020, 9858671. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Demirbas, S. Some new Chebyshev type inequalities for fractional integral operator containing a further extension of Mittag-Leffler function in the kernel. Afr. Mat. 2022, 33, 42. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Mumcu, I. Chebyshev type inequalities involving generalized Katugampola fractional integral operators. Tamkang J. Math. 2019, 50, 381–390. [Google Scholar] [CrossRef]
- Set, E.; Dahmani, Z.; Mumcu, I. New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szegö inequality. Int. J. Optim. Control. Theor. Appl. 2018, 8, 137–144. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators. Fractal Fract. 2021, 5, 160. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractals and Fractional Calculus in Continuum Mechanics, 1st ed.; Springer: Vienna, Austria, 1997. [Google Scholar]
- Niculescu, C.P.; Roventa, I. An extention of Chebyshev’s algebric inequality. Math. Rep. 2013, 15, 91–95. [Google Scholar]
- Liu, W.; Liu, L. Properties of Hadamard Fractional Integral and Its Application. Fractal Fract. 2022, 6, 670. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. Applications of new time and Spatial fractional derivative with exponential kernels. Progr. Fract. Differ. Appl. 2016, 2, 7–8. [Google Scholar] [CrossRef]
- Katugampola, U.N. A New Approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Sneddon, I.N. Mixed Boundary Value Problems in Potential Theory; North-Holland Publ. Co.: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatices with non-local and non-singular kernel. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef]
- Baleanu, D.; Fernandez, A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 444–462. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Fract. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Rashid, S.; Jarad, F.; Noor, M.A.; Kalsoom, H.; Chu, Y.-M. Inequalities by Means of Generalized Proportional Fractional Integral Operators with Respect to Another Function. Mathematics 2019, 7, 1225. [Google Scholar] [CrossRef]
- Andréief, C. Note sur une relation entre les intǵrales définies des produits des fonctions. Mém. Soc. Sci. Phys. Nat. Bordeaux 1886, 2, 1–14. [Google Scholar]
- Fink, A.M.; Jodeit, M. On Chebyshev’s Other Inequality. IMS Lect. Notes Monogr. Ser. 1984, 5, 115–120. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kórus, P.; Nápoles Valdés, J.E. A Review of the Chebyshev Inequality Pertaining to Fractional Integrals. Mathematics 2025, 13, 1137. https://doi.org/10.3390/math13071137
Kórus P, Nápoles Valdés JE. A Review of the Chebyshev Inequality Pertaining to Fractional Integrals. Mathematics. 2025; 13(7):1137. https://doi.org/10.3390/math13071137
Chicago/Turabian StyleKórus, Péter, and Juan Eduardo Nápoles Valdés. 2025. "A Review of the Chebyshev Inequality Pertaining to Fractional Integrals" Mathematics 13, no. 7: 1137. https://doi.org/10.3390/math13071137
APA StyleKórus, P., & Nápoles Valdés, J. E. (2025). A Review of the Chebyshev Inequality Pertaining to Fractional Integrals. Mathematics, 13(7), 1137. https://doi.org/10.3390/math13071137