Sufficient Conditions for the Non-Existence of Global Solutions to Fractional Systems with Lower-Order Hadamard-Type Fractional Derivatives
Abstract
:1. Introduction
2. Preliminaries
3. Non-Existence Result
4. Conclusions
- Investigate the case of higher-order Hadamard-type fractional derivatives, which may require different techniques.
- Consider fractional differential equations with more general nonlinear terms, such as those involving discontinuous nonlinearities or nonlocal conditions.
- Investigate whether the sufficient conditions for the non-existence of solutions can be relaxed while maintaining the core result.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moroz, V.; Makarchuk, O. Application of a Fractional Transfer Function for Simulating the Eddy Currents Effect in Electrical Systems. Energies 2022, 15, 7046. [Google Scholar] [CrossRef]
- Kolmogoroff, A. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 1931, 104, 415–458. [Google Scholar]
- Sabatier, J.; Agrawal, O.; Machado, J.A. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar]
- Bagley, R.L.; Torvik, P.L. On the fractional calculus models of viscoelastic behaviour. J. Rheol. 1986, 30, 133–155. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Hackensack, NJ, USA, 2001. [Google Scholar]
- Laskin, N. Fractional quantum mechanics and Lèvy integral. Phys. Lett. 2000, 268, 298–305. [Google Scholar]
- Bingi, K.; Rajanarayan Prusty, B.; Pal Singh, A. Review on fractional-order modelling and control of robotic manipulators. Fractal Fract. 2023, 7, 77. [Google Scholar] [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.A.; Bates, H.T. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar]
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210. [Google Scholar]
- Mainardi, F. Fractional relaxation-oscilation and fractional diffusion-wave phenomena. Chaos Solitons Fract. 1996, 7, 1461–1477. [Google Scholar]
- Magin, R.L.; Ovadia, M. Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 2008, 14, 1431–1442. [Google Scholar]
- Hadamard, J. Essai sur l’étude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Hackensack, NJ, USA, 2022. [Google Scholar]
- Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer Science & Business Media: London, UK, 2010. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Liu, W.; Liu, L. Properties of Hadamard fractional integral and its application. Fractal Fract. 2022, 6, 670. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Oxford, UK, 2006; Volume 204. [Google Scholar]
- Mainardi, F.; Spada, G. On the viscoelastic characterization of the Jeffreys–Lomnitz law of creep. Rheol. Acta 2012, 51, 783–791. [Google Scholar]
- Lomnitz, C. Creep measurements in igneous rocks. J. Geol. 1956, 64, 473–479. [Google Scholar]
- Harold, J. A modification of Lomnitz’s law of creep in rocks. Geophys. J. Int. 1958, 1, 92–95. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Diethelm, K.; Ford, N.J. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Kassim, M.D.; Furati, K.M.; Tatar, N.-E. On a differential equation involving Hilfer-Hadamard fractional derivative. Abstr. Appl. Anal. 2012, 2012, 391062. [Google Scholar]
- Aljoudi, S.; Ahmad, B.; Nieto, J.; Alsaedi, A. A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions. Chaos Soliton Fract. 2016, 91, 39–46. [Google Scholar]
- Benchohra, M.; Bouriah, S.; Graef, J. Boundary value problems for nonlinear implicit Caputo-Hadamard-type fractional differential equations with impulses. Mediterr. J. Math. 2017, 14, 206. [Google Scholar]
- Huang, H.; Zhao, K.; Liu, X. On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Math. 2022, 7, 19221–19236. [Google Scholar]
- Mouy, M.; Boulares, H.; Alshammari, S.; Alshammari, M.; Laskri, Y.; Mohammed, W.W. On averaging principle for Caputo-Hadamard fractional stochastic differential pantograph equation. Fractal Fract. 2023, 7, 31. [Google Scholar] [CrossRef]
- Ortigueira, M.; Bohannan, G. Fractional scale calculus: Hadamard vs. Liouville. Fractal Fract. 2023, 7, 296. [Google Scholar] [CrossRef]
- Zhao, K. Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag–Leffler functions. Filomat 2023, 37, 1053–1063. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Ahmad, B. Hadamard fractional differential equations on an unbounded domain with integro-initial conditions. Qual. Theor. Dyn. Syst. 2024, 23, 183. [Google Scholar] [CrossRef]
- Alruwaily, Y.; Venkatachalam, K.; El-hady, E. On some impulsive fractional integro-differential equation with anti-periodic conditions. Fractal Fract. 2024, 8, 219. [Google Scholar] [CrossRef]
- Hammad, H.; Aydi, H.; Kattan, D. Integro-differential equations implicated with Caputo-Hadamard derivatives under nonlocal boundary constraints. Phys. Scr. 2024, 99, 025207. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, J. Solvability for a system of Hadamard-type hybrid fractional differential inclusions. Demonstr. Math. 2023, 56, 20220226. [Google Scholar] [CrossRef]
- Ciftci, C.; Deren, F. Analysis of p-Laplacian Hadamard fractional boundary value problems with the derivative term involved in the nonlinear term. Math. Method Appl. Sci. 2023, 46, 8945–8955. [Google Scholar] [CrossRef]
- Rafeeq, A.; Thabet, S.; Mohammed, M.; Kedim, I.; Vivas-Cortez, M. On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions. Alex. Eng. J. 2024, 86, 386–398. [Google Scholar] [CrossRef]
- Lv, X.; Zhao, K.; Xie, H. Stability and Numerical Simulation of a Nonlinear Hadamard Fractional Coupling Laplacian System with Symmetric Periodic Boundary Conditions. Symmetry 2024, 16, 774. [Google Scholar] [CrossRef]
- Kassim, M.D. Convergence to logarithmic-type functions of solutions of fractional systems with Caputo-Hadamard and Hadamard fractional derivatives. Fract. Calc. Appl. Anal. 2024, 27, 281–318. [Google Scholar]
- Kassim, M.D.; Ali, S.M.; Abdo, M.S.; Jarad, F. Nonexistence results of Caputo-type fractional problem. Adv. Diff. Eq. 2021, 2021, 246. [Google Scholar]
- Kassim, M.D.; Furati, K.M.; Tatar, N.-E. Non-existence for fractionally damped fractional differential problems. Acta Math. Sci. 2017, 37, 119–130. [Google Scholar]
- Kirane, M.; Medved, M.; Tatar, N.-E. On the nonexistence of blowing-up solutions to a fractional functional differential equations. Georgian Math. J. 2012, 19, 127–144. [Google Scholar]
- Kirane, M.; Tatar, N.-E. Nonexistence of solutions to a hyperbolic equation with a time fractional damping. Z. Für Anal. Ihre Anwendung. 2006, 25, 131–142. [Google Scholar]
- Kirane, M.; Tatar, N.-E. Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions. Siberian J. Math. 2007, 48, 477–488. [Google Scholar]
- Kirane, M.; Laskri, Y.; Tatar, N.-E. Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J. Math. Anal. Appl. 2005, 312, 488–501. [Google Scholar]
- Laskri, Y.; Tatar, N.-E. The critical exponent for an ordinary fractional differential problem. Comput. Math. Appl. 2010, 59, 1266–1270. [Google Scholar]
- Tatar, N.-E. Nonexistence results for a fractional problem arising in thermal diffusion in fractal media. Chaos Solitons Fract. 2008, 36, 1205–1214. [Google Scholar]
- Alazman, I.; Jleli, M.; Samet, B. On the absence of global solutions to two-times-fractional differential inequalities involving Hadamard-Caputo and Caputo fractional derivatives. AIMS Math. 2022, 7, 5830–5843. [Google Scholar]
- Alotaibi, M.; Jleli, M.; Ragusa, M.A.; Samet, B. On the absence of global weak solutions for a nonlinear time-fractional Schrödinger equation. Appl. Anal. 2024, 103, 1–15. [Google Scholar]
- Sadek, L.; Baleanu, D.; Abdo, M.S.; Shatanawi, W. Introducing novel Θ-fractional operators: Advances in fractional calculus. J. King Saud Univ.-Sci. 2024, 36, 103352. [Google Scholar]
- Furati, K.M.; Kirane, M. Necessary conditions for the existence of global solutions to systems of fractional differential equations. Fract. Calc. Appl. Anal. 2008, 11, 281–298. [Google Scholar]
- Kassim, M.D.; Tatar, N.-E. Nonexistence of global solutions for fractional differential problems with power type source Term. Mediterr. J. Math. 2021, 18, 1–13. [Google Scholar]
- Mitidieri, E.; Pohozaev, S.I. A priori estimates and blow-up of solutions to non-linear partial differential equations and inequalities. Proc. Steklov Inst. Math. 2001, 234, 3–383. [Google Scholar]
- Kilbas, A.A.; Marichev, O.I.; Samko, S.G. Fractional Integral and Derivatives (Theory and Applications); Gordon and Breach: Basel, Switzerland, 1993. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Mellin transform analysis and integration by parts for Hadamard-type fractional integral. J. Math. Anal. Appl. 2002, 270, 1–15. [Google Scholar]
- Anastassiou, G.A. Opial type Inequalities involving Riemann-Liouville fractional derivatives of two functions with applications. Math. Comput. Model. 2008, 48, 344–374. [Google Scholar] [CrossRef]
- Kuczma, K. An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality; Birkhäuser: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.M.; Kassim, M.D. Sufficient Conditions for the Non-Existence of Global Solutions to Fractional Systems with Lower-Order Hadamard-Type Fractional Derivatives. Mathematics 2025, 13, 1031. https://doi.org/10.3390/math13071031
Ali SM, Kassim MD. Sufficient Conditions for the Non-Existence of Global Solutions to Fractional Systems with Lower-Order Hadamard-Type Fractional Derivatives. Mathematics. 2025; 13(7):1031. https://doi.org/10.3390/math13071031
Chicago/Turabian StyleAli, Saeed M., and Mohammed D. Kassim. 2025. "Sufficient Conditions for the Non-Existence of Global Solutions to Fractional Systems with Lower-Order Hadamard-Type Fractional Derivatives" Mathematics 13, no. 7: 1031. https://doi.org/10.3390/math13071031
APA StyleAli, S. M., & Kassim, M. D. (2025). Sufficient Conditions for the Non-Existence of Global Solutions to Fractional Systems with Lower-Order Hadamard-Type Fractional Derivatives. Mathematics, 13(7), 1031. https://doi.org/10.3390/math13071031