Algebras of Calderón–Zygmund Operators Associated with Para-Accretive Functions on Spaces of Normal Homogeneous Type
Abstract
:1. Introduction
- (a)
- , and if and only if ;
- (b)
- for all ;
- (c)
- there exists a constant such that for all ,
2. Preliminaries and the Main Theorem
2.1. Product Singular Integral Operators in Journé’s Class
- (I)
- Size condition:
- (II)
- Mixed Hölder and size conditions:;;;;
- (III)
- Hölder conditions:
- (IV)
- The size condition:
- (V)
- Hölder conditions:;;
- (VI)
- We need the representations (10) and .
2.2. Generalized-Product Calderón–Zygmund Operator
3. The Proofs of Theorems
3.1. Continuous Calderón Reproducing Formulas
- (i)
- if and ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- , for and ;
- (v)
- for ;
- (vi)
- for .
3.2. Several Key Almost-Orthogonal Estimates
- (I1)
- and ,
- (I2)
- and ,
- (I3)
- and ,
- (I4)
- and .
3.3. Some Useful Estimates
3.4. Proof of Theorem 1
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calderón, A.P.; Zygmund, A. On the existence of certain singular integrals. Acta Math. 1952, 88, 85–139. [Google Scholar]
- Calderón, A.P.; Zygmund, A. Algebras of certain singular operators. Amer. J. Math. 1956, 78, 310–320. [Google Scholar]
- Fefferman, C. Characterization of bounded mean oscillation. Bull. Amer. Math. Soc. 1971, 77, 587–588. [Google Scholar] [CrossRef]
- Meyer, Y.; Coifman, R. Wavelets: Calderón-Zygmund and Multilinear Operators; Cambridge University Press: Cambridge, UK, 1997; pp. 43–76. [Google Scholar]
- David, G.; Journó, J.L.; Semmes, S. Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam. 1985, 1, 1–56. [Google Scholar] [CrossRef]
- Han, Y.S.; Lee, M.Y.; Lin, C.C. Algebra of Calderón-Zygmund operators associated to para-accretive functions. J. Fourier Anal. Appl. 2006, 12, 581–596. [Google Scholar]
- Coifman, R.; Weiss, G. Analyse Harmonique Non-Commutative Sur Certains Espaces Homogènes. (French) Étude de Certaines Intégrales Singulières; Lecture Notes in Math., 242; Springer: Berlin, Germany; New York, NY, USA, 1971; p. 160. [Google Scholar]
- Macías, R.A.; Segovia, C. Lipschitz functions on spaces of homogeneous type. Adv. Math. 1979, 33, 257–270. [Google Scholar] [CrossRef]
- Han, Y.S.; Lin, C.C. Algebra of Calderón-Zygmund operators on spaces of homogeneous type. Taiwanese J. Math. 2003, 7, 309–328. [Google Scholar]
- Fefferman, R.; Stein, E.M. Singular integrals on product spaces. Adv. Math. 1982, 45, 117–143. [Google Scholar]
- Journé, J. Calderón-Zygmund operators on product spaces. Rev. Mat. Iberoam. 1985, 1, 55–91. [Google Scholar] [CrossRef] [PubMed]
- Pott, S.; Villarroya, P. A T (1) theorem on product spaces. arXiv 2013, arXiv:1105.2516. [Google Scholar]
- Han, Y.S.; Lee, M.Y.; Lin, C.C. Tb theorem on product spaces. Math. Proc. Cambridge Philos. Soc. 2016, 161, 117–141. [Google Scholar] [CrossRef]
- Liao, F.H.; Wang, Y.; Li, Z.Y. Algebras of Calderón-Zygmund operators on spaces of homogeneous type. J. Geom. Anal. 2022, 32, 126–149. [Google Scholar]
- Martikainen, H. Representation of bi-parameter singular integrals by dyadic operators. Adv. Math. 2012, 229, 1734–1761. [Google Scholar] [CrossRef]
- Nagel, A.; Stein, E.M. On the product theory of singular integrals. Rev. Mat. Iberoam. 2004, 20, 531–561. [Google Scholar]
- Han, Y.S. Calderón-type reproducing formula and the Tb theorem. Rev. Mat. Iberoam. 1994, 10, 51–91. [Google Scholar] [CrossRef]
- Lee, M.Y.; Li, J.; Lin, C.C. Product Hardy spaces associated with para-accretive functions and Tb theorem. N. Y. J. Math. 2019, 25, 1438–1484. [Google Scholar]
- Zheng, T.T.; Tao, X.X. Tb theorem for the generalized singular integral operator on product Lipschitz spaces with para-accretive functions. N. Y. J. Math. 2020, 26, 1028–1063. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, R.; Zheng, T.; Tao, X. Algebras of Calderón–Zygmund Operators Associated with Para-Accretive Functions on Spaces of Normal Homogeneous Type. Mathematics 2025, 13, 1030. https://doi.org/10.3390/math13071030
Liang R, Zheng T, Tao X. Algebras of Calderón–Zygmund Operators Associated with Para-Accretive Functions on Spaces of Normal Homogeneous Type. Mathematics. 2025; 13(7):1030. https://doi.org/10.3390/math13071030
Chicago/Turabian StyleLiang, Rong, Taotao Zheng, and Xiangxing Tao. 2025. "Algebras of Calderón–Zygmund Operators Associated with Para-Accretive Functions on Spaces of Normal Homogeneous Type" Mathematics 13, no. 7: 1030. https://doi.org/10.3390/math13071030
APA StyleLiang, R., Zheng, T., & Tao, X. (2025). Algebras of Calderón–Zygmund Operators Associated with Para-Accretive Functions on Spaces of Normal Homogeneous Type. Mathematics, 13(7), 1030. https://doi.org/10.3390/math13071030