Decomposition Algorithm for a Nonlinear Three-Index Transportation Problem
Abstract
:1. Introduction
2. Problem Statement and Solution Method
3. A Sample
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kacher, Y.; Singh, P. A Comprehensive Literature Review on Transportation Problems. Int. J. Appl. Comput. Math. 2021, 7, 206. [Google Scholar] [CrossRef]
- Hitchcock, F.L. The Distribution of a Product from Several Sources to Numerous Localities. J. Math. Phys. 1941, 20, 224–230. [Google Scholar] [CrossRef]
- Kantorovitch, L. O peremeshchenii mass. Dokl. Akad. Nauk SSSR 1942, 37, 227–230. (In Russian) [Google Scholar]
- Kantorovitch, L. On the Translocation of Masses. Manag. Sci. 1958, 5, 1–4. [Google Scholar] [CrossRef]
- Kantorovich, L.V. Mathematical Methods of Organizing and Planning Production. Manag. Sci. 1960, 6, 366–422. [Google Scholar] [CrossRef]
- Koopmans, T.C. Optimum Utilization of the Transportation System. Econometrica 1949, 17, 136. [Google Scholar] [CrossRef]
- Fulkerson, D.R. An Out-of-Kilter Method for Minimal-Cost Flow Problems. J. Soc. Ind. Appl. Math. 1961, 9, 18–27. [Google Scholar] [CrossRef]
- Klein, M. A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems. Manag. Sci. 1967, 14, 205–220. [Google Scholar] [CrossRef]
- Lurie, A. The Use of Mathematics in Economics; Oliver and Boyd: Edinburgh, UK, 1964; pp. 323–355. [Google Scholar]
- Hadley, G. Linear Programming; Addison-Wesley Publishing Company: Reading, MA, USA, 1962. [Google Scholar]
- Trius, E. Mathematical Programming Problems of Transport Type; Soviet Radio: Moscow, Russia, 1967. (In Russian) [Google Scholar]
- Golshtein, E.; Yudin, D. Linear Programming Problems of Transport Type; Nauka: Moscow, Russia, 1969. (In Russian) [Google Scholar]
- Raskin, L. Multi-Index Problems of Linear Programming; Radio i svyaz: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- Winston, W.L. Operations Research: Applications and Algorithms, 4th ed.; Brooks/Cole-Thomson Learning: Belmont, CA, USA, 2004. [Google Scholar]
- Hillier, F.S.; Lieberman, G.J. Introduction to Operations Research, 9th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Taha, H.A. Operations Research, 10th ed.; Pearson: London, UK, 2017. [Google Scholar]
- Motzkin, T. The multi-index transportation problem. Bull. Am. Math. Soc. 1952, 58, 494. [Google Scholar]
- Corban, A. A multidimensional transportation problem. In Revue Roumaine de Mathematiques Pures et Appliquees; 1964; pp. 721–735. [Google Scholar]
- Queyranne, M.; Spieksma, F. Multi-index transportation problemsMulti-index Transportation Problems. In Encyclopedia of Optimization; Floudas, C.A., Pardalos, P.M., Eds.; Springer: Boston, MA, USA, 2009; pp. 2413–2419. [Google Scholar] [CrossRef]
- Haley, K.B. New Methods in Mathematical Programming—The Solid Transportation Problem. Oper. Res. 1962, 10, 448–463. [Google Scholar] [CrossRef]
- Afraimovich, L.G.; Prilutskii, M.K. Multiindex resource distributions for hierarchical systems. Autom. Remote Control 2006, 67, 1007–1016. [Google Scholar] [CrossRef]
- Afraimovich, L.G.; Prilutskii, M.K. Multicommodity flows in tree-like networks. J. Comput. Syst. Sci. Int. 2008, 47, 214–220. [Google Scholar] [CrossRef]
- Koubaa, M.; Ammar, M.H.; Dhouib, D.; Mnejja, S. (Eds.) Solving the Multi-Objective Four-Dimensional Transportation Problem using the Strength Pareto Evolutionary Algorithm. In Optimization in the Agri-Food Supply Chain; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; Chapter 6; pp. 89–120. [Google Scholar] [CrossRef]
- Sungeeta, S.; Renu, T.; Deepali, S. A review on fuzzy and stochastic extensions of the multi index transportation problem. Yugosl. J. Oper. Res. 2017, 27, 3–29. [Google Scholar] [CrossRef]
- Cao, J. Mathematical Model and Algorithm of Multi-Index Transportation Problem in the Background of Artificial Intelligence. J. Adv. Transp. 2022, 2022, 3664105. [Google Scholar] [CrossRef]
- Shetty, C.M. A Solution to the Transportation Problem with Nonlinear Costs. Oper. Res. 1959, 7, 571–580. [Google Scholar] [CrossRef]
- Walther, H. Nonlinear transportation problems. In Ten Applications of Graph Theory; Springer: Dordrecht, The Netherlands, 1984; pp. 100–125. [Google Scholar] [CrossRef]
- Geetha, S.; Vartak, M. The three-dimensional bottleneck assignment problem with capacity constraints. Eur. J. Oper. Res. 1994, 73, 562–568. [Google Scholar] [CrossRef]
- Haley, K.B. The Existence of a Solution to the Multi-Index Problem. J. Oper. Res. Soc. 1965, 16, 471–474. [Google Scholar] [CrossRef]
- Romero, D. Easy transportation-like problems onK-dimensional arrays. J. Optim. Theory Appl. 1990, 66, 137–147. [Google Scholar] [CrossRef]
- Roy, S.K.; Midya, S.; Weber, G.W. Multi-objective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural Comput. Appl. 2019, 31, 8593–8613. [Google Scholar] [CrossRef]
- Klansek, U.; Psunder, M. Solving the nonlinear transportation problem by global optimization. Transport 2010, 25, 314–324. [Google Scholar] [CrossRef]
- Bandopadhyaya, L.; Puri, M.C. Impaired flow multi-index transportation problem with axial constraints. J. Aust. Math. Society. Ser. B Appl. Math. 1988, 29, 296–309. [Google Scholar] [CrossRef]
- Hajiaghaei-Keshteli, M.; Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R. Addressing a nonlinear fixed-charge transportation problem using a spanning tree-based genetic algorithm. Comput. Ind. Eng. 2010, 59, 259–271. [Google Scholar] [CrossRef]
- Biswas, A.; Shaikh, A.A.; Niaki, S.T.A. Multi-objective non-linear fixed charge transportation problem with multiple modes of transportation in crisp and interval environments. Appl. Soft Comput. 2019, 80, 628–649. [Google Scholar] [CrossRef]
- Albuquerque, J.S.; Biegler, L. Decomposition algorithms for on-line estimation with nonlinear DAE models. Comput. Chem. Eng. 1997, 21, 283–299. [Google Scholar] [CrossRef]
- Yousif, M.A.; Mahmood, B.A. Approximate solutions for solving the Klein–Gordon and sine-Gordon equations. J. Assoc. Arab Univ. Basic Appl. Sci. 2017, 22, 83–90. [Google Scholar] [CrossRef]
- Junginger, W. On representatives of multi-index transportation problems. Eur. J. Oper. Res. 1993, 66, 353–371. [Google Scholar] [CrossRef]
- Tizik, A.P.; Tsurkov, V.I. Iterative functional modification method for solving a transportation problem. Autom. Remote Control 2012, 73, 134–143. [Google Scholar] [CrossRef]
- Tizik, A.; Tsurkov, V. A decomposition procedure for one class of block programming problems. USSR Comput. Math. Math. Phys. 1989, 29, 233–238. [Google Scholar] [CrossRef]
- Dumbadze, L. Development of Methods and Algorithms in Problems of Optimal Use and Development of Networks. Ph.D. Thesis, Computing Centre of Russian Academy of Sciences, Moscow, Russia, 2007. (In Russian). [Google Scholar]
- Sokolov, A.A.; Tizik, A.P.; Tsurkov, V.I. Iterative method for the transportation problem with additional supply and consumption points and quadratic cost. J. Comput. Syst. Sci. Int. 2013, 52, 588–598. [Google Scholar] [CrossRef]
- Leonov, V.Y.; Tizik, A.P.; Torchinskaya, E.V.; Tsurkov, V.I. Decomposition method for a class of transport-type problems with a quadratic objective function. J. Comput. Syst. Sci. Int. 2017, 56, 796–802. [Google Scholar] [CrossRef]
- Lobantsov, V.V.; Tizik, A.P.; Tsurkov, V.I. Decomposition Algorithm in a Nonlinear Transport Problem with Storage. J. Comput. Syst. Sci. Int. 2024, 63, 800–820. [Google Scholar] [CrossRef]
- Afraimovich, L.G. Multi-index transport problems with decomposition structure. Autom. Remote Control 2012, 73, 118–133. [Google Scholar] [CrossRef]
- Wang, L.P.; Esenkov, A.S.; Tizik, A.P.; Torchinskaya, E.V. Decomposition Method for Solving Three-Index Transportation Problems. J. Comput. Syst. Sci. Int. 2018, 57, 759–765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobantsov, V.; Tizik, A.; Tsurkov, V.; Matveev, I. Decomposition Algorithm for a Nonlinear Three-Index Transportation Problem. Mathematics 2025, 13, 944. https://doi.org/10.3390/math13060944
Lobantsov V, Tizik A, Tsurkov V, Matveev I. Decomposition Algorithm for a Nonlinear Three-Index Transportation Problem. Mathematics. 2025; 13(6):944. https://doi.org/10.3390/math13060944
Chicago/Turabian StyleLobantsov, Vladimir, Alexander Tizik, Vladimir Tsurkov, and Ivan Matveev. 2025. "Decomposition Algorithm for a Nonlinear Three-Index Transportation Problem" Mathematics 13, no. 6: 944. https://doi.org/10.3390/math13060944
APA StyleLobantsov, V., Tizik, A., Tsurkov, V., & Matveev, I. (2025). Decomposition Algorithm for a Nonlinear Three-Index Transportation Problem. Mathematics, 13(6), 944. https://doi.org/10.3390/math13060944