Revisiting the Group Classification of the General Nonlinear Heat Equation ut = (K(u)ux)x
Abstract
:1. Introduction
2. Conclusions
- For an arbitrary , the equation admits a three-parameter Lie group;
- For (or its exponential limit ), the symmetry group extends to a four-parameter Lie group;
- For , the equation admits a five-parameter Lie group.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lie, S. On integration of a class of linear differential equations. Arch. Math. 1981, 6, 328–368. (In German) [Google Scholar]
- Ovsyannikov, L.V. Group relations of the nonlinear heat equation. Dokl. Akad. Nauk SSSR 1959, 125, 492–495. [Google Scholar]
- Bluman, G.; Kumei, S. On the remarkable nonlinear diffusion equation = 0. J. Math. Phys. 1980, 21, 1019–1023. [Google Scholar] [CrossRef]
- Yung, C.M.; Verburg, K.; Baveye, P. Group classification and symmetry reductions of the nonlinear diffusion-convection equation ut = (D(u)ux)x − K′(u)ux. Int. J. Nonlin. Mech. 1994, 29, 273–278. [Google Scholar] [CrossRef]
- Torrisi, M.; Tracina, R.; Valenti, A. A group analysis approach for a nonlinear differential system arising in diffusion phenomena. J. Math. Phys. 1996, 37, 4758–4767. [Google Scholar] [CrossRef]
- Bruzón, M.S.; Gandarias, M.L.; Torrisi, M.; Tracina, R. On some applications of transformation groups to a class of nonlinear dispersive equations. Nonlinear Anal. Real World Appl. 2012, 13, 1139–1151. [Google Scholar] [CrossRef]
- Leite Freire, I. Group classification of Burgers’ equations. arXiv 2008, arXiv:0804.3003. [Google Scholar]
- Nadjafikhah, M.; Bakhshandeh-Chamazkoti, R. Symmetry group classification for general Burgers’ equation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2303–2310. [Google Scholar] [CrossRef]
- Sinkala, W.; Leach, P.G.L.; O’Hara, J.G. Invariance properties of a general bond-pricing equation. J. Differ. Equ. 2008, 244, 2820–2835. [Google Scholar] [CrossRef]
- Arif, F.; Jhangeer, A.; Mahomed, F.M.; Zaman, F.D. Lie group classification and conservation laws of a (2+1)-dimensional nonlinear damped Klein–Gordon Fock equation. Partial Differ. Equ. Appl. Math. 2024, 12, 100962. [Google Scholar] [CrossRef]
- Zhdanov, R.; Lahno, V. Group classification of the general evolution equation: Local and quasilocal symmetries. Symmetry Integr. Geom. 2005, 1, 9. [Google Scholar] [CrossRef]
- Mogorosi, T.E.; Muatjetjeja, B. Group classification of a generalized coupled hyperbolic Lane–Emden system. Iran. J. Sci. Technol. Trans. A. 2019, 43, 273–278. [Google Scholar] [CrossRef]
- Bluman, G.W. Construction of Solutions to Partial Differential Equations by the Use of Transformation Groups. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1967. [Google Scholar]
- Bluman, G.W.; Cole, J.D. Similarity Methods for Differential Equations; Springer: New York, NY, USA, 2012. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinkala, W. Revisiting the Group Classification of the General Nonlinear Heat Equation ut = (K(u)ux)x. Mathematics 2025, 13, 911. https://doi.org/10.3390/math13060911
Sinkala W. Revisiting the Group Classification of the General Nonlinear Heat Equation ut = (K(u)ux)x. Mathematics. 2025; 13(6):911. https://doi.org/10.3390/math13060911
Chicago/Turabian StyleSinkala, Winter. 2025. "Revisiting the Group Classification of the General Nonlinear Heat Equation ut = (K(u)ux)x" Mathematics 13, no. 6: 911. https://doi.org/10.3390/math13060911
APA StyleSinkala, W. (2025). Revisiting the Group Classification of the General Nonlinear Heat Equation ut = (K(u)ux)x. Mathematics, 13(6), 911. https://doi.org/10.3390/math13060911