Harnack Inequality for Self-Repelling Diffusions Driven by Subordinated Brownian Motion
Abstract
:1. Introduction
2. Preliminaries
3. Proofs
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durrett, R.; Rogers, L.C.G. Asymptotic behavior of Brownian polymer. Probab. Theory Relat. Fields 1992, 92, 337–349. [Google Scholar] [CrossRef]
- Benaïm, M.; Ledoux, M.; Raimond, O. Self-interacting diffusions. Probab. Theory Relat. Fields 2002, 122, 1–41. [Google Scholar] [CrossRef]
- Benaïm, M.; Ciotir, I.; Gauthier, C.-E. Self-repelling diffusions via an infinite dimensional approach. Stoch PDE Anal. Comp. 2015, 3, 506–530. [Google Scholar] [CrossRef]
- He, J.; Guo, Q. An explicit method for the self-interacting diffusion driven by fractional Brownian motion under global Lipschitz conditions. Appl. Math. Lett. 2022, 134, 108379. [Google Scholar] [CrossRef]
- Pan, Y.; Jiang, H. Asymptotic properties for quadratic functionals of linear self-repelling diffusion process and applications. Stoch. Anal. Appl. 2022, 40, 691–713. [Google Scholar] [CrossRef]
- Forte, B. Functional Equations and Inequalities; Springer: Berlin, Germany, 2010. [Google Scholar]
- Vespri, V.; Gianazza, U.; Monticelli, D.D.; Punzo, F.; Andreucci, D. Harnack Inequalities and Nonlinear Operators: Proceedings of the INdAM Conference to Celebrate the 70th Birthday of Emmanuele DiBenedetto; Springer: Berlin, Germany, 2021. [Google Scholar]
- Negro, L. Harnack inequality for Ornstein-Uhlenbeck type operators. Arch. Math. 2020, 114, 331–341. [Google Scholar] [CrossRef]
- Bao, J.; Wang, F.; Yuan, C. Bismut formulae and applications for functional SPDEs. Bull. Sci. Math. 2013, 137, 509–522. [Google Scholar] [CrossRef]
- Bismut, J.M. Large Deviations and the Malliavin Calculus; Birkhäuser: Boston, MA, USA, 1984. [Google Scholar]
- Fan, X.; Ren, Y. Bismut formulas and applications for stochastic (functional) differential equations driven by fractional Brownian motions. Stoch. Dyn. 2017, 17, 1750028. [Google Scholar] [CrossRef]
- Guillin, A.; Wang, F. Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality. J. Differ. Equ. 2012, 253, 20–40. [Google Scholar] [CrossRef]
- Arnaudon, M.; Thalmaier, A.; Wang, F. Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds. Stoch. Proc. Appl. 2009, 119, 3653–3670. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J. Harnack inequalities for stochastic equations driven by Lévy noise. J. Math. Anal. Appl. 2014, 410, 513–523. [Google Scholar] [CrossRef]
- Zhang, X. Derivative formulas and gradient estimates for SDEs driven by α-stable processes. Stoch. Proc. Appl. 2013, 123, 1213–1228. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some Gronwall Type Inequalities and Applications. 2002. Available online: https://www.researchgate.net/publication/228607920_Some_Gronwall_type_inequalities_and_applications (accessed on 6 April 2025).
- Da Prato, G.; Röckner, M.; Wang, F. Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J. Funct. Anal. 2009, 257, 992–1017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Yan, L. Harnack Inequality for Self-Repelling Diffusions Driven by Subordinated Brownian Motion. Mathematics 2025, 13, 1262. https://doi.org/10.3390/math13081262
Sun Y, Yan L. Harnack Inequality for Self-Repelling Diffusions Driven by Subordinated Brownian Motion. Mathematics. 2025; 13(8):1262. https://doi.org/10.3390/math13081262
Chicago/Turabian StyleSun, Yaqin, and Litan Yan. 2025. "Harnack Inequality for Self-Repelling Diffusions Driven by Subordinated Brownian Motion" Mathematics 13, no. 8: 1262. https://doi.org/10.3390/math13081262
APA StyleSun, Y., & Yan, L. (2025). Harnack Inequality for Self-Repelling Diffusions Driven by Subordinated Brownian Motion. Mathematics, 13(8), 1262. https://doi.org/10.3390/math13081262