Geometry of LP-Sasakian Manifolds Admitting a General Connection
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
- (iv)
2. Preliminaries
3. Curvature Tensors in Accordance with General Connection in an LP-Sasakian Manifolds
- (i)
- of is specified by (26);
- (ii)
- of is specified by (27);
- (iii)
- of is specified by (31);
- (iv)
- of is symmetric;
- (v)
- .
Case 1 | Results |
Quarter-symmetric metric connection | |
r | |
Case 2 | Results |
Schouten–Van Kampen connection | |
Case 3 | Results |
Tanaka Webster connection | |
Case 4 | Results |
Zamkovoy connection | |
4. Projectively Flat LP-Sasakian Manifolds in Accordance with General Connection
5. Conharmonically Flat LP-Sasakian Manifolds in Accordance with General Connection
6. Quasi-Conharmonically Flat LP-Sasakian Manifolds in Accordance with General Connection
7. Ricci Semi-Symmetric LP-Sasakian Manifolds in Accordance with General Connection
8. Applications to the General Theory of Relativity
9. Example
10. Conclusions
Conditions | Results |
generalized -Einstein manifold | |
-projectively flat | generalized -Einstein manifold |
-conharmonically flat | |
-conharmonically flat | generalized -Einstein manifold |
quasi-conharmonically flat | |
generalized -Einstein manifold |
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mihai, I.; Rosca, R. On Lorentzian P-Sasakian Manifolds; Classical Analysis; World Scientific Publishing: Singapore, 1992; pp. 155–169. [Google Scholar]
- Matsumoto, K. On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Nat. Sci. 1989, 12, 151–156. [Google Scholar]
- Biswas, A.; Baishya, K.K. A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds. Sci. Stud. Res. Ser. Math. Inform. 2019, 29, 59–72. [Google Scholar]
- Biswas, A.; Baishya, K.K. Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection. Bull. Transilv. Univ. Bras. 2020, 12, 233–246. [Google Scholar]
- Biswas, A.; Das, S.; Baishya, K.K. On Sasakian manifolds satisfying curvature restrictions with respect to quarter symmetric metric connection. Sci. Stud. Res. Ser. Math. Inform. 2018, 28, 29–40. [Google Scholar]
- Golab, S. On semi-symmetric and quarter-symmetric linear connections. Tensor NS 1975, 29, 249–254. [Google Scholar]
- Schouten, J.A.; Kampen, E.R.V. Zur Einbettungs-und Krummungstheorie nichtholonomer. Gebilde Math. Ann. 1930, 103, 752–783. [Google Scholar] [CrossRef]
- Tanno, S. The automorphism groups of almost contact Riemannian manifold. Tohoku Math. J. 1969, 21, 21–38. [Google Scholar] [CrossRef]
- Zamkovoy, S. Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 2008, 36, 37–60. [Google Scholar] [CrossRef]
- Bhatt, P.; Chanyal, S.K. η-Ricci solitons on Sasakian manifolds admitting general connection. J. Mt. Res. 2024, 19, 163–169. [Google Scholar] [CrossRef]
- Kundu, R.; Das, A.; Biswas, A. Conformal Ricci soliton in Sasakian manifolds admitting general connection. J. Hyperstruct. 2024, 13, 46–61. [Google Scholar]
- Altunbas, M. Ricci solitons on concircularly flat and Wi-flat Sasakian manifolds admitting a general connection. Malaya J. Mat. 2025, 13, 8–14. [Google Scholar] [CrossRef]
- Yano, K.; Bochner, S. Curvature and Betti Numbers; Annals of Mathematics Studies 32; Princeton University Press: Princeton, NJ, USA, 1953. [Google Scholar]
- Ghosh, S. On a class of (k, μ)-contact manifolds. Bull. Cal. Math. Soc. 2010, 102, 219–226. [Google Scholar]
- De, U.C.; Sengupta, J. On a Type of SemiSymmetric Metric Connection on an almost contact metric connection. Facta Universitatis Ser. Math. Inform. 2001, 16, 87–96. [Google Scholar]
- Ishii, Y. On conharmonic transformations. Tensor NS 1957, 11, 73–80. [Google Scholar]
- Patterson, E.M. Some theorems on Ricci-recurrent spaces. J. Lond. Math. Soc. 1952, 27, 287–295. [Google Scholar] [CrossRef]
- Eriksson, I.; Senovilla, J.M.M. Note on (conformally) semi-symmetric spacetimes. Class. Quantum Grav. 2010, 27, 027001. [Google Scholar] [CrossRef]
- Ellis, G.F.R. Relativistic Cosmology in General Relativity and Cosmology; Sachs, R.K., Ed.; Academic Press: London, UK, 1971. [Google Scholar]
- De, U.C.; Mallick, S.L. On a type of spacetime. Mathematica Moravica. 2014, 18, 29–38. [Google Scholar] [CrossRef]
- Mantica, C.A.; De, U.C.; Suh, Y.J.; Molinari, L.G. Perfect fluid spacetimes with harmonic generalized curvature tensor. Osaka J. Math. 2019, 56, 173–182. [Google Scholar]
- Zengin, F.O. M-projectively flat spacetimes. Math. Rep. 2012, 4, 363–370. [Google Scholar]
- Güler, S.; Demirbağ, S.A. A study of generalized quasi Einstein spacetimes with applications in general relativity. Int. J. Theor. Phys. 2016, 55, 548–562. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Chawngthu, L.; Bahadır, O.; Khan, M.A. Geometry of LP-Sasakian Manifolds Admitting a General Connection. Mathematics 2025, 13, 902. https://doi.org/10.3390/math13060902
Kumar R, Chawngthu L, Bahadır O, Khan MA. Geometry of LP-Sasakian Manifolds Admitting a General Connection. Mathematics. 2025; 13(6):902. https://doi.org/10.3390/math13060902
Chicago/Turabian StyleKumar, Rajesh, Laltluangkima Chawngthu, Oğuzhan Bahadır, and Meraj Ali Khan. 2025. "Geometry of LP-Sasakian Manifolds Admitting a General Connection" Mathematics 13, no. 6: 902. https://doi.org/10.3390/math13060902
APA StyleKumar, R., Chawngthu, L., Bahadır, O., & Khan, M. A. (2025). Geometry of LP-Sasakian Manifolds Admitting a General Connection. Mathematics, 13(6), 902. https://doi.org/10.3390/math13060902