Properties for Close-to-Convex and Quasi-Convex Functions Using q-Linear Operator
Abstract
:1. Introduction
2. Preliminary Results
3. Main Results
3.1. Inclusion Results
3.2. Invariance of the Classes Under -Bernardi Integral Operator
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Mongraphs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Bulboaca, T. Differential Subordinations and Superordinations, Recent Results; House of Scientific Book Publication: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Carmichael, R.D. The general theory of linear q-difference equations. Amer. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
- Mason, T.E. On properties of the solution of linear q-difference equations with entire function coefficients. Am. J. Math. 1915, 37, 439–444. [Google Scholar] [CrossRef]
- Trjitzinsky, W.J. Analytic theory of linear difference equations. Acta Math. 1933, 61, 1–38. [Google Scholar] [CrossRef]
- Ismail, M.E.-H.; Merkes, E.; Styer, D.A. generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Kota, W.Y.; El-Ashwah, R.M. Some application of subordination theorems associated with fractional q-calculus operator. Math. Bohem. 2023, 148, 131–148. [Google Scholar] [CrossRef]
- Wang, B.; Srivastava, R.; Liu, J.-L. A certain subclass of multivalent analytic functions defined by the q-difference operator related to the Janowski functions. Mathematics 2021, 9, 1706. [Google Scholar] [CrossRef]
- Ali, E.E.; El-Ashwah, R.M.; Albalahi, A.M.; Sidaoui, R.; Moumen, A. Inclusion properties for analytic functions of q-analogue multiplier-Ruscheweyh operator. AIMS Math. 2023, 9, 6772–6783. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, D. Some classes of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
- Arif, M.; Ul-Haq, M.; Liu, J.L. A subfamily of univalent functions associated with q-analogueof Noor integral operator. J. Funct. Spaces 2018, 2018, 5. [Google Scholar]
- Aouf, M.K.; Madian, S.M. Subordination factor sequence results for starlike and convex classes defined by q-Catas operator. Afr. Mat. 2021, 32, 1239–1251. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. Vol. 2014, 958563, 6. [Google Scholar] [CrossRef]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order alpha. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef]
- Wongsaigai, B.; Sukantamala, N. A certain class of q-close-to-convex functions of order α. Filomat 2018, 32, 2295–2305. [Google Scholar] [CrossRef]
- Breaz, D.; Alahmari, A.A.; Cotîrla, L.-I.; Shah, S.A. On Generalizations of the Close-to-Convex Functions Associated with q-Srivastava–Attiya Operator. Mathematics 2023, 11, 2022. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Amer. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Ali, E.E.; Vivas-Cortez, M.; El-Ashwah, R.M. New results about fuzzy γ-convex functions connected with the q-analogue multiplier-Noor integral operator. AIMS Math. 2024, 9, 5451–5465. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; El-Ashwah, R.M.; Albalahi, A.M.; Mohammed, W.W. Properties for Close-to-Convex and Quasi-Convex Functions Using q-Linear Operator. Mathematics 2025, 13, 900. https://doi.org/10.3390/math13060900
Ali EE, El-Ashwah RM, Albalahi AM, Mohammed WW. Properties for Close-to-Convex and Quasi-Convex Functions Using q-Linear Operator. Mathematics. 2025; 13(6):900. https://doi.org/10.3390/math13060900
Chicago/Turabian StyleAli, Ekram E., Rabha M. El-Ashwah, Abeer M. Albalahi, and Wael W. Mohammed. 2025. "Properties for Close-to-Convex and Quasi-Convex Functions Using q-Linear Operator" Mathematics 13, no. 6: 900. https://doi.org/10.3390/math13060900
APA StyleAli, E. E., El-Ashwah, R. M., Albalahi, A. M., & Mohammed, W. W. (2025). Properties for Close-to-Convex and Quasi-Convex Functions Using q-Linear Operator. Mathematics, 13(6), 900. https://doi.org/10.3390/math13060900