Tripled Fixed Points, Obtained by Ran-Reunrings Theorem for Monotone Maps in Partially Ordered Metric Spaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tripled Fixed Point
- (d1.i)
- reflexive, provided that for every
- (d1.ii)
- antisymmetric, provided that if and then
- (d1.iii)
- transitive, provided that and then
2.2. Fixed Points for Monotone Maps in Partially Ordered Complete Metric Spaces
- (th2.i)
- f is continuous
- (th2.ii)
- for any convergent sequence
- if then
- if then .
- (th2.I)
- A priori error estimate
- (th2.II)
- A posteriori error estimate
- (th2.III)
- The rate of convergence .
2.3. Matrix Equations
3. Results
3.1. Tripled Fixed Points for Maps with the Mixed Monotone Property in Partially Ordered Metric Spaces
- (th5.i)
- , are continuous maps
- (th5.ii)
- for any convergent sequence ,
- if then
- if then .
- , , and
- , , and
- (th5.I)
- a priori error estimate
- (th5.II)
- a posteriori error estimate
- (th5.III)
- the rate of convergence
- (th6.i)
- and
- (th6.ii)
- if each pair of components , where if , , and , has either a lower bound or an upper bound.
3.2. Tripled Fixed Points for Maps with the Total Monotone Property in Partially Ordered Metric Spaces
- (th7.i)
- , are continuous maps
- (th7.ii)
- for any convergent sequence ,
- if then
- if then .
- , , and
- , , and
- (th7.I)
- a priori error estimate
- (th7.II)
- a posteriori error estimate
- (th7.III)
- the rate of convergence
- (th8.i)
- and
- (th8.iI)
- any two triples there is a triple , comparable with both .
4. Applications of Theorems 5 and 7 in Solving of Systems of Matrix Equations
4.1. Application of Theorem 5
- (th9.i)
- , for
- (th9.ii)
- (th9.iii)
- (th9.I)
- a priori error estimate
- (th9.II)
- a posteriori error estimate
- (th9.III)
- the convergence rate
- (th10.i)
- (th10.ii)
- (th10.iii)
- .
4.2. Application of Theorem 7
- (th11.i)
- , for
- (th11.ii)
- , for
- (th11.iii)
- (th11.I)
- a priori error estimate
- (th11.II)
- a posteriori error estimate
- (th11.III)
- the convergence rate
- (th12.i)
- ,
- (th12.ii)
5. Illustrative Examples
5.1. Application of Theorem 9
5.2. Application of Theorem 10
5.3. Application of Theorem 11
5.4. Application of Theorem 12
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, W.N.; Morley, T.D.; Trapp, G.E. Positive Solutions to X = A − BX−1B*. Linear Algebra Appl. 1990, 134, 53–62. [Google Scholar] [CrossRef]
- Engwerda, J.C. On the Existence of a Positive Definite Solution of the Matrix Equation X + ATX−1A = I. Linear Algebra Appl. 1993, 194, 91–108. [Google Scholar] [CrossRef]
- Zhan, X. Computing the Extremal Positive Definite Solution of a Matrix Equation. SIAM J. Sci. Comput. 1996, 247, 337–345. [Google Scholar] [CrossRef]
- Guo, C.; Lancaster, P. Iterative Solution of Two Matrix Equations. Math. Comput. 1999, 68, 1589–1603. [Google Scholar] [CrossRef]
- Ferrante, A.; Levy, B.C. Hermitian Solution of the Equation X = Q + NX−1N*. Linear Algebra Appl. 1996, 247, 359–373. [Google Scholar] [CrossRef]
- Hasanov, V.; El-Sayed, S.M. On the Positive Definite Solutions of Nonlinear Matrix Equation X + A*X−δA = Q. Linear Algebra Appl. 2006, 412, 154–160. [Google Scholar] [CrossRef]
- Hasanov, V. Positive Definite Solutions of the Matrix Equations X ± A*X−qA = Q. Linear Algebra Appl. 2005, 404, 166–182. [Google Scholar] [CrossRef]
- Hasanov, V.; Hakkaev, S. Newton’s Method for a Nonlinear Matrix Equation. C. R. Acad. Bulgare Sci. 2015, 68, 973–982. [Google Scholar]
- Nikolova, K.; Hasanov, V. On Inexact Newton Methods for Solving Two Nonlinear Matrix Equations. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2024, 16, 311–327. [Google Scholar] [CrossRef]
- Hasanov, V. Positive Definite Solutions of a Linearly Perturbed Matrix Equation. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2021, 13, 5–19. [Google Scholar] [CrossRef]
- Din, F.U.; Alshaikey, S.; Ishtiaq, U.; Din, M.; Sessa, S. Single and Multi-Valued Ordered-Theoretic Perov Fixed-Point Results for θ-Contraction with Application to Nonlinear System of Matrix Equations. Mathematics 2024, 12, 1302. [Google Scholar] [CrossRef]
- Antón-Sancho, Á. Triality and Automorphisms of Principal Bundles Moduli Spaces. Adv. Geom. 2024, 24, 421–435. [Google Scholar] [CrossRef]
- Antón-Sancho, Á. Spin(8, C)-Higgs Bundles and the Hitchin Integrable System. Mathematics 2024, 12, 3436. [Google Scholar] [CrossRef]
- Antón-Sancho, Á. Fixed Points of Involutions of G-Higgs Bundle Moduli Spaces over a Compact Riemann Surface with Classical Complex Structure Group. Front. Math. 2024, 19, 1025–1039. [Google Scholar] [CrossRef]
- Antón-Sancho, Á. Principal SO(2n, C)-Bundle Fixed Points Over a Compact Riemann Surface. J. Math. Phys. Anal. Geom. 2024, 20, 139–152. [Google Scholar] [CrossRef]
- Banach, B. Sur les opérations dan les ensembles abstraits et leurs applications aux integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Ran, A.; Reurings, M. A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Turinici, M. Abstract Comparison Principles and Multivariable Gronwall-Bellman Inequalities. J. Math. Anal. Appl. 1986, 117, 100–127. [Google Scholar] [CrossRef]
- Dehaish, B.A.B.; Alharbi, R.K. Common Fixed Points Approximation of Two Generalized Alpha Nonexpansive Mappings in Partially Ordered Uniformly Convex Banach Space. Math. Sci. 2023, 17, 379–385. [Google Scholar] [CrossRef]
- Çevik, C.; Özeken, Ç.C. Coupled Fixed Point Results for New Classes of Functions on Ordered Vector Metric Space. Acta Math. Hungar. 2024, 172, 1–18. [Google Scholar] [CrossRef]
- Majid, N.A.; Jumaili, A.A.; Ng, Z.C.; Lee, S.K. Some Applications of Fixed Point Results for Monotone Multivalued and Integral Type Contractive Mappings. Fixed Point Theory Algorithms Sci. Eng. 2023, 2023, 11. [Google Scholar] [CrossRef]
- Nikam, V.; Shukla, A.K.; Gopal, D. Existence of a System of Fractional Order Differential Equations via Generalized Contraction Mapping in Partially Ordered Banach Space. Int. J. Dyn. Cont. 2024, 12, 125–135. [Google Scholar] [CrossRef]
- Paramasivam, E.; Sampath, S. Tripled Fixed Point Theorems in Partially Ordered ϵ-Chainable Metric Spaces for Uniformly Locally Contractive Mappings. AIP Conf. Proc. 2023, 2852, 020010. [Google Scholar] [CrossRef]
- Berzig, M.; Duan, X.; Samet, B. Positive Definite Solution of the Matrix Equation X = Q − A*X−1A + B*X−1B via Bhaskar-Lakshmikantham Fixed Point Theorem. Math. Sci. 2012, 6, 27. [Google Scholar] [CrossRef]
- Bhaskar, T.G.; Lakshmikantham, V. Fixed Point Theorems in Partially Ordered Metric Spaces and Applications. Nonlinear Anal. Theory Methods Appl. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
- Guo, D.; Lakshmikantham, V. Coupled Fixed Points of Nonlinear Operators with Applications. Nonlinear Anal. Theory Methods Appl. 1987, 11, 623–632. [Google Scholar] [CrossRef]
- Zlatanov, B. Coupled Best Proximity Points for Cyclic Contractive Maps and Their Applications. Fixed Point Theory 2021, 22, 431–452. [Google Scholar] [CrossRef]
- Erfanifar, R.; Hajarian, M. Efficient Iterative Schemes Based on Newton’s Method and Fixed-Point Iteration for Solving Nonlinear Matrix Equation Xp = Q ± A(X−1 + B)−1AT. Eng. Comput. 2023, 40, 2862–2890. [Google Scholar] [CrossRef]
- Sayevand, K.; Erfanifar, H.; Esmaili, H. The Maximal Positive Definite Solution of the Nonlinear Matrix Equation X + A*X−1A + B*X−1B = I. Math. Sci. 2023, 17, 337–350. [Google Scholar] [CrossRef]
- Berinde, V.; Borcut, M. Tripled Fixed Point Theorems for Contractive Type Mappings in Partially Ordered Metric Spaces. Nonlinear Anal. Theory Methods Appl. 2011, 74, 4889–4897. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Postolache, M. Tripled Coincidence Point Theorems for Weak ϕ-Contractions in Partially Ordered Metric Spaces. Fixed Point Theory Appl. 2012, 2012, 44. [Google Scholar] [CrossRef]
- Borcut, M.; Pscurar, M.; Berinde, V. Tripled Fixed Point Theorems for Mixed Monotone Kannan Type Contractive Mappings. Appl. Math. Comput. 2014, 2014, 120203. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C. Coupled Fixed Point, f-Invariant Set and Fixed Point of n-Order. Ann. Funct. Anal. 2010, 1, 46–56. [Google Scholar] [CrossRef]
- Dzhabarova, Y.; Zlatanov, B. A Note on the Market Equilibrium in Oligopoly with Three Industrial Players. AIP Conf. Proc. 2022, 2449, 070013. [Google Scholar] [CrossRef]
- Ilchev, A.; Ivanova, V.; Kulina, H.; Yaneva, P.; Zlatanov, B. Investigation of Equilibrium in Oligopoly Markets with the Help of Tripled Fixed Points in Banach Spaces. Econometrics 2024, 12, 18. [Google Scholar] [CrossRef]
- Ali, A.; Dinkova, C.; Ilchev, A.; Zlatanov, B. Bhaskar-Lakshmikantham Fixed Point Theorem vs. Ran-Reunrings One and Some Possible Generalizations and Applications in Matrix Equations. AIMS Math. 2024, 9, 21890–21917. [Google Scholar] [CrossRef]
- Simovici, D.A.; Djeraba, C. Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics; Springer: London, UK, 2008. [Google Scholar] [CrossRef]
- Ajeti, L.; Ilchev, A. A Variational Principle and Triple Fixed Points. AIP Conf. Proc. 2025. in print. [Google Scholar]
- Nieto, J.J.; Rodríguez-López, R. Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis. Graduate Texts in Mathematics; Springer: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications, I—Fixed-Point Theorems; Springer: New York, NY, USA, 1986. [Google Scholar]
- Hasanov, V. On the Matrix Equation X + A*X−1A − B*X−1B = I. Linear Multilinear Algebra 2018, 66, 1783–1798. [Google Scholar] [CrossRef]
- Petruşel, A. Fixed Points vs. Coupled Fixed Points. J. Fixed Point Theory Appl. 2018, 20, 150. [Google Scholar] [CrossRef]
- Petruşel, A.; Petruşel, G.; Xiao, Y.-B.; Yao, J.-C. Fixed Point Theorems for Generalized Contractions with Applications to Coupled Fixed Point Theory. J. Nonlinear Convex Anal. 2018, 19, 71–81. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Dinkova, C.; Ilchev, A.; Kulina, H.; Zlatanov, B. Tripled Fixed Points, Obtained by Ran-Reunrings Theorem for Monotone Maps in Partially Ordered Metric Spaces. Mathematics 2025, 13, 760. https://doi.org/10.3390/math13050760
Ali A, Dinkova C, Ilchev A, Kulina H, Zlatanov B. Tripled Fixed Points, Obtained by Ran-Reunrings Theorem for Monotone Maps in Partially Ordered Metric Spaces. Mathematics. 2025; 13(5):760. https://doi.org/10.3390/math13050760
Chicago/Turabian StyleAli, Aynur, Cvetelina Dinkova, Atanas Ilchev, Hristina Kulina, and Boyan Zlatanov. 2025. "Tripled Fixed Points, Obtained by Ran-Reunrings Theorem for Monotone Maps in Partially Ordered Metric Spaces" Mathematics 13, no. 5: 760. https://doi.org/10.3390/math13050760
APA StyleAli, A., Dinkova, C., Ilchev, A., Kulina, H., & Zlatanov, B. (2025). Tripled Fixed Points, Obtained by Ran-Reunrings Theorem for Monotone Maps in Partially Ordered Metric Spaces. Mathematics, 13(5), 760. https://doi.org/10.3390/math13050760