On the Sixth-Order Beam Equation of Small Deflection with Variable Parameters
Abstract
:1. Introduction
2. Existence Theorem
3. A Uniqueness Theorem
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanfer, A.; Bougoffa, L. On the fourth-order nonlinear beam equation of a small deflection with nonlocal conditions. Aims Math. 2021, 6, 9899–9910. [Google Scholar] [CrossRef]
- Khanfer, A.; Bougoffa, L. On the nonlinear system of fourth-order beam equations with integral boundary conditions. Aims Math. 2021, 6, 11467–11481. [Google Scholar] [CrossRef]
- Khanfer, A.; Bougoffa, L. A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data. J. Funct. Spaces. 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Kovacs, B.; O’Regan, D. Existence of positive solution for a sixth–order differential system with variable parameters. J. Appl Math Comput. 2013, 1–2, 437–454. [Google Scholar] [CrossRef]
- M. Alvelid, Sixth order differential equation for sandwich beam deflection including transverse shear. Compos. Struct. 2013, 102, 29–37. [Google Scholar] [CrossRef]
- H. Mirzaei, Existence and nonexistence of positive solution for sixth-order boundary vlaue problems. Bull. Iranian Math. Soc. 2016, 42, 1451–1458. [Google Scholar]
- Glatzmaier, G.A. Numerical simulations of stellar convection dynamics at the base of the convection zone. Fluid Dynam. 1985, 31, 137–150. [Google Scholar]
- Toomre, J.; Zahn, J.; Latour, J.; Spiegel, E. Stellar convection theory ii: Single-mode study of the second convection zone in a-type stars. Astrophys. J. 1976, 207, 545–563. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Hydrodynamics and Hydromagntic Stability; Dover: New York, NY, USA, 1981. [Google Scholar]
- Jalilian, R.; Rashidinia, J. Convergence analysis of nonic-spline solutions for special nonlinear sixth-order boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3805–3813. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The numerical solution of sixth-order boundary value problems by the modified decomposition method. Appl. Math. Comput. 2001, 118, 311–325. [Google Scholar] [CrossRef]
- He, J.H. Variational approach to the sixth order boundary value problems. Appl. Math. Comput. 2003, 143, 235–236. [Google Scholar] [CrossRef]
- Olaiya, O.O.; Rasaq, A.A.; Modebei, M.I.; Dario, D. Boundary value method for direct solution of sixth-Order boundary value problems. Asian Res. J. Math. 2020, 16, 1–15. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Mohyud-Din, S.T. Variational iteration method for solving sixth-order boundary value problems. Commun. Nonlinear Sci. Numer. 2009, 14, 2571–2580. [Google Scholar] [CrossRef]
- Siddiqi, S.S.; Twizell, E.H. Spline solutions of linear sixth-order boundary value problems. Int. J. Comput. Math. 1996, 60, 295–304. [Google Scholar] [CrossRef]
- Kanwal, G.; Ghaffar, A.; Hafeezullah, M.M.; Manan, S.A.; Rizwan, M.; Rahman, G. Numerical solution of 2-point boundary value problem by subdivision scheme. Commun. Math. Appl. 2019, 10, 19–29. [Google Scholar]
- Khalid, A.; Naeem, M.N. Cubic B-spline solution of nonlinear sixth order boundary value problems. Punjab Univ. J. Math. 2018, 50, 91–103. [Google Scholar]
- Manan, S.A.; Ghaffar, A.; Rizwan, M.; Rahman, G.; Kanwal, G. A subdivision approach to the approximate solution of 3rd order boundary value problem. Commun. Math. Appl. 2018, 9, 499–512. [Google Scholar]
- Khalid, A.; Naeem, M.N.; Agarwal, P.; Ghaffar, A.; Ullah, Z.; Jain, S. Numerical approximation for the solution of linear sixth order boundary value problems by cubic B-spline. Adv. Differ. Equ. 2019, 2019, 492. [Google Scholar] [CrossRef]
- Zouaoui, B.; Benaicha, S. Positive solutions for boundary value problem of sixth-order elastic beam equation. Open J. Math. Sci. 2020, 4, 9–17. [Google Scholar]
- Li, W. The existence and multiplicity of positive solutions of nonlinear sixth-order boundary value problem with three variable coefficients. Bound. Value Probl. 2012, 2012, 22. [Google Scholar] [CrossRef]
- Kovács, B.; Guedda, M. Positive solution for m-point sixth-order boundary value problem with variable parameter. Sci. Bull. Petru Maior Univ. Tirg. Mures 2014, 11, 50. [Google Scholar]
- Zhang, L.; An, Y. Existence and multiplicity of positive solutions of a boundary-value problem for sixth-order ODE with three Parameters. Bound. Value Probl. 2010, 2010, 878131. [Google Scholar] [CrossRef]
- Yang, Y.S. Fourth-order two-point boundary value problems. Proc. Amer. Math. Soc. 1988, 104, 175–180. [Google Scholar] [CrossRef]
- Bougoffa, L.; Khanfer, A. Existence and uniqueness theorems of second-order equations with integral boundary conditions. Bull. Korean Math. Soc. 2018, 55, 899–911. [Google Scholar]
- Ghazala, A.; Siddiqi, S.S. Solution of sixth order boundary value problems using non-polynomial spline technique. Appl. Math. Comput. 2006, 181, 708–720. [Google Scholar]
- Boutayeb, A.; Twizell, E.H. Numerical methods for the solution of special sixth-order boundary-value problems. Int. J. Comput. Math. 1992, 45, 207–223. [Google Scholar] [CrossRef]
- El-Gamel, M.; Cannon, J.R.; Latour, J.; Zayed, A.I. Sinc-Galerkin method for solving linear sixth-order boundary-value problems. Math. Comput. 2003, 73, 1325–1343. [Google Scholar] [CrossRef]
- Noor, M.A.; Mohyud-Din, S.T. Homotopy perturbation method for solving sixth-order boundary value problems. Comput. Math. Appl. 2008, 55, 2953–2972. [Google Scholar] [CrossRef]
- Cveticanin, L. Homotopy-perturbation method for pure nonlinear differential equation. Chaos Solitons Fractals. 2006, 30, 1221–1230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanfer, A.; Bougoffa, L.; Alhelali, N. On the Sixth-Order Beam Equation of Small Deflection with Variable Parameters. Mathematics 2025, 13, 727. https://doi.org/10.3390/math13050727
Khanfer A, Bougoffa L, Alhelali N. On the Sixth-Order Beam Equation of Small Deflection with Variable Parameters. Mathematics. 2025; 13(5):727. https://doi.org/10.3390/math13050727
Chicago/Turabian StyleKhanfer, Ammar, Lazhar Bougoffa, and Nawal Alhelali. 2025. "On the Sixth-Order Beam Equation of Small Deflection with Variable Parameters" Mathematics 13, no. 5: 727. https://doi.org/10.3390/math13050727
APA StyleKhanfer, A., Bougoffa, L., & Alhelali, N. (2025). On the Sixth-Order Beam Equation of Small Deflection with Variable Parameters. Mathematics, 13(5), 727. https://doi.org/10.3390/math13050727