Next Article in Journal
Temporal Community Detection and Analysis with Network Embeddings
Previous Article in Journal
Average Size of Ramanujan Sum Associated with Divisor Function
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Characterization of Monotone Sequences of Positive Numbers Prescribed by Means †

by
János T. Tóth
1,
Ferdinánd Filip
1,
Szilárd Svitek
1,* and
Zuzana Václavíková
2
1
Department of Mathematics, J. Selye University, 945 01 Komárno, Slovakia
2
Department of Mathematics, University of Ostrava, 701 03 Ostrava, Czech Republic
*
Author to whom correspondence should be addressed.
This article is a revised and expanded version of a conference paper entitled On Sequences of Positive Numbers Prescribed by Means, which was presented at the conference: Mathematics, Information Technologies and Applied Sciences (MITAV), Brno, Czech Republic, 20–21 June 2024.
Mathematics 2025, 13(5), 696; https://doi.org/10.3390/math13050696
Submission received: 20 December 2024 / Revised: 27 January 2025 / Accepted: 17 February 2025 / Published: 21 February 2025

Abstract

:
The aim of this article is to investigate the relations between the exponent of the convergence of sequences and other characteristics defined for monotone sequences of positive numbers. Another main goal is to characterize such monotone sequences  ( a n )  of positive numbers that, for each  n 2 , satisfy the equality  a n = K ( a n 1 , a n + 1 ) , where the function  K : R + × R + R +  is the mean, i.e., each value of  K ( x , y )  lies between  min { x , y }  and  max { x , y } . Well-known examples of such sequences are, for example, arithmetic (geometric) progression, because starting from the second term, each of its terms is equal to the arithmetic (geometric) mean of its neighboring terms. Furthermore, this accomplishment generalized and extended previous results, where the properties of the logarithmic sequence  ( a n )  are referred to, i.e., in such a sequence that every  n 2  satisfies  a n = L ( a n 1 , a n + 1 ) , where  L ( x , y )  is the logarithmic mean of positive numbers  x , y  defined as follows:  L ( x , y ) : = y x ln y ln x if x y , x if x = y .

1. Introduction

The core focus of this paper is to investigate the relations between the convergence exponent of sequences and other characteristics specified for monotone sequences of positive numbers. We also focus on the characterization of such monotone sequences  ( a n )  of positive numbers that for each  n 2  satisfy the equality  a n = K ( a n 1 , a n + 1 ) , for some mean  K : R + × R + R + . Such sequences that satisfy this equality for each  n 2  are called K-sequences. In the present paper, some basic estimations and limits of the terms of K-sequences are investigated.
Denote by  N  and  R +  the set of all positive integers and positive real numbers, respectively. Let us denote  S  (respectively,  T ) the system of all nondecreasing (nonincreasing) sequences of positive real numbers and for  h ( 0 , ] l [ 0 , ) , we denote
S h = { ( a n ) S : lim n a n = h } and T l = { ( a n ) T : lim n a n = l } .
So,
S = h ( 0 , ] S h and T = l [ 0 , ) T l .
This area has been studied by many mathematicians. For this paper, we were inspired by [1,2,3,4,5,6,7,8,9].

2. Definitions and Notations

In this part, we recall some basic definitions. The following definitions are from papers [1,2,7,9,10,11].
A function  M : R + × R + R +  is called a mean on  R +  if for all  x , y R +  we have
min { x , y } M ( x , y ) max { x , y } .
It is obvious that  M ( x , x ) = x  for all  x R + .
The mean  M : R + × R + R +  is called symmetric if
M ( x , y ) = M ( y , x )
for all  x , y R + .
The mean  M : R + × R + R +  is called a strict mean on  R +  if for all  x , y R +  with  x y  we have
min { x , y } < M ( x , y ) < max { x , y } .
The mean  M : R + × R + R +  is called homogeneous if
M ( z x , z y ) = z M ( x , y ) ,
for all  x , y , z R + .
Classical examples of two-variable strict means on  R +  are the arithmetic, the geometric, and the harmonic mean:
A ( x , y ) : = x + y 2 , G ( x , y ) : = x y , H ( x , y ) : = 2 x y x + y .
The power mean of degree  α R  of two positive numbers  x , y  is as follows:
M α ( x , y ) = x α + y α 2 1 α if α 0 and M 0 ( x , y ) = lim α 0 M α ( x , y ) .
The case  α = 1  corresponds to the arithmetic mean,  α = 0  to the geometric mean, and  α = 1  to the harmonic mean. It is well known that
lim α M α ( x , y ) = lim α x α + y α 2 1 α = min { x , y }
and
lim α M α ( x , y ) = lim α x α + y α 2 1 α = max { x , y } .
The means  min { x , y } , max { x , y }  are called the minimum and maximum mean, respectively. Obviously, the mean  M α  is a homogeneous strict mean such that
lim y M α ( x , y ) = for α > 0 ,
lim x 0 M α ( x , y ) = 0 for α < 0 ,
moreover,  M α ( x , y )  is continuous with respect to x and y.
It is well known that  M 0 ( x , y )  and  M α ( x , y )  is increasing with respect to  α  for a given  x , y R +  (see [12]).
The logarithmic mean (see [9]) of positive numbers  x , y  is
L ( x , y ) : = y x ln y ln x if x y , x if x = y .
Obviously, the mean L is a homogeneous strict mean such that
lim y L ( x , y ) = and lim x 0 L ( x , y ) = 0 .
Moreover,  L ( x , y )  is continuous with respect to x and y.
In [4,5], there is a generalization of the logarithmic mean and in [6,7], the following relation between  L ( a , b )  and  M α ( a , b )  was proven in various ways for arbitrary positive numbers  a , b :
M 0 ( a , b ) L ( a , b ) M 1 3 ( a , b ) ,
where the equality occurs if and only if  a = b .
For  p R  the generalized logarithmic mean  L p  of two positive numbers and are defined as
L p ( a , b ) = a if a = b , b p a p p ( b a ) 1 p 1 if a b , p 0 , p 1 , b a ln b ln a if a b , p = 0 , 1 e b b a a 1 b a if a b , p = 1 .
It is well known that  L p ( a , b )  is continuous and increasing with respect to p for fixed a and b (see [4]). Notice that  L 1 ( a , b ) = M 0 ( a , b ) .
A sequence  ( a n )  of positive real numbers is called a logarithmic sequence if
a n = L ( a n 1 , a n + 1 ) for every n 2 .
Let  K : R + × R + R +  be a mean. Then, the sequence  ( a n )  of positive real numbers is called a K-sequence if
a n = K ( a n 1 , a n + 1 ) for every n 2 .
If the mean K is chosen to be the logarithmic mean, i.e.,  K = L , then the logarithmic sequence is obtained. Thus, the logarithmic sequence is an L-sequence. Of course, we can choose any of the means  M α  and  L p ; in this case, we obtain the  M α - and  L p -sequences, respectively.
Let  f : R + R +  be a monotone function. Then the f-mean of two positive numbers  a , b  is as follows:
M f ( a , b ) = f 1 f ( a ) + f ( b ) 2 .
In the case of  f ( x ) = x α , we have  M f = M α .
In [12], the exponent of convergence of a sequence  ( a n ) S  is defined as the infimum of all positive real numbers  α  such that the series  n = 1 a n α  is convergent and, in case no such  α  exist, we define the exponent of convergence as . Let us denote the exponent of convergence of  ( a n ) S  by  λ ( ( a n ) ) . It can be easily seen that  λ ( ( a n ) )  can be interpreted as a measure of rate of convergence of  ( a n )  to infinity. If  q > λ ( ( a n ) ) , then  n = 1 a n q <  and if  q < λ ( ( a n ) ) , then  n = 1 a n q = . In case  q = λ ( ( a n ) ) , the series  n = 1 a n q  can be either convergent or divergent.
From ([12], p. 26, Exercises 113, 114), it follows that the set of all possible values of  λ  forms the whole interval  [ 0 , ] , i.e.,  { λ ( ( a n ) ) : ( a n ) S } = [ 0 , ]  and if  ( a n ) S , then  λ ( ( a n ) )  can be calculated by
λ ( ( a n ) ) = lim sup n log n log a n .
For  0 < q , we define the set
I 1 / x q = ( a n ) S : n = 1 1 a n q < .
By values of  λ , we define the following sets (similarly to [10,13]):
I < q = { ( a n ) S : λ ( ( a n ) ) < q }  for  0 < q ,
I q = { ( a n ) S : λ ( ( a n ) ) q }  for  0 q  and
I 0 = { ( a n ) S : λ ( ( a n ) ) = 0 } .
Obviously,  I 0 = I 0  and  I = S .
Families  I < q , I q , and  I 1 / x q  are related to  0 < q < q  by following inclusions (similarly to [13], Th.2.1.)
I 0 I < q I 1 / x q I q I < q ,
and the difference of successive sets is infinite, so equality does not hold in any of the inclusions.

3. Overview of Known Results

In this section, we mention well-known results related to the topic of this paper and some of them are generalized in the proofs of our theorems.
  ( S 1 )
Let  a 1 , a 2  be two positive numbers.
(i)
If  a 1 = a 2 , then  a 1 , a 2  are the first two terms of the constant sequence
a 1 , a 1 , , a 1 ,  which is logarithmic.
(ii)
Let  a 1 a 2 . Then, there exists a logarithmic sequence  ( a k )  such that if  a 1 < a 2 , then  a 1 < a 2 < < a k < a k + 1 < , and if  a 1 > a 2 , then  a 1 > a 2 > > a k > a k + 1 > . ([2], Theorem 2.1.)
  ( S 2 )
Let  ( a k )  be a logarithmic sequence of positive numbers. Then, we have
(i)
If  a 1 > a 2 , then the series  k = 1 a k  converges and
k = 1 a k a 1 2 a 1 a 2 .
([2], Theorem 2.2.)
(ii)
If  a 1 < a 2 , then  lim k a k = . ([2], Theorem 2.3.)
  ( S 3 )
Let  ( a n )  be an increasing logarithmic sequence of positive numbers. Then, the following statements hold.
(i)
The series  n = 1 1 a n  converges. Moreover,
a n > a 2 α a 1 α 2 1 α n 1 α for every α 1 3 and n 2 .
([1], Corollary 2.3., and Theorem 2.1.(i))
(ii)
The inequality
a n + 1 a n > a 2 a 1 2 ( n + 1 )
holds for every  n 2 .
([1], Theorem 2.6.)
(iii)
We have
lim n a n + 1 a n = 1 and lim n a n q n = 0 for every real q > 1 .
([1], Theorem 2.7., and Corollary 2.8.)
  ( S 4 )
Let  ( a n )  be a decreasing logarithmic sequence of positive numbers. Then, the following statements hold.
(i)
We have
a n < a 2 α a 1 α 2 1 α n 1 α for every α < 0 and n 2 .
([1], Theorem 2.1.(ii))
(ii)
We have
lim n a n + 1 a n = 0 and lim n a n q n = 0 for every real q > 0 .
([1], Theorem 2.7., and Corollary 2.8.)

4. Results

In this section, we generalize the results of  ( S 1 ) ( S 4 )  for a suitable class of means. The following Theorem 1 generalizes the result  ( S 1 ) , and it holds for all known means from part 2.
The next theorem describes for given positive real numbers  b c  such means  K ( x , y )  for which there is a sequence  ( a n ) , which will be a K-sequence and  a 1 = b , a 2 = c . If  b = c , then  b , c  are the first two terms of the constant sequence  b , b , , b , , which is a K-sequence for every mean  K ( x , y ) .
Theorem 1.
Suppose that  K : R + × R + R +  is a strict mean such that  K ( x , y )  is continuous with respect to x and y. Let  a 1 a 2  be two positive numbers. Then, we have
(i)
if  a 1 < a 2  and  lim y K ( x , y ) = , then there exists a sequence  ( a n )  which is a K-sequence and, in such a case, the sequence  ( a n )  is increasing.
(ii)
if  a 1 > a 2  and  lim y 0 K ( x , y ) = 0 , then there exists a sequence  ( a n )  which is a K-sequence and, in such a case, the sequence  ( a n )  is decreasing.
Proof. 
(i) Let  a 1 < a 2 . We shall prove that there exists  y > 0 , such that  a 2 = K ( a 1 , y ) . Let us consider the function  f ( y ) = K ( a 1 , y )  on the interval  ( a 1 , ) . From the statements of this theorem, we demonstrate that the function f is continuous on  ( a 1 , )  and there holds
lim y a 1 f ( y ) = f ( a 1 ) = a 1 and lim y f ( y ) = .
Since function f is continuous, f has the Darboux property on  ( a 1 , ) . Thus, (1) implies the existence of  a 3 ( a 1 , )  such that  f ( a 3 ) = a 2 , i.e.,  K ( a 1 , a 3 ) = a 2 . Since K is a strict mean, then  a 1 < a 2 < a 3 .
(ii) It can be shown similarly that if  a 1 > a 2 , then there exists  a 3 < a 2  such that  K ( a 1 , a 3 ) = a 2 . In this case, let us consider the function  f ( x ) = K ( a 1 , y )  defined on the interval  ( 0 , a 1 ) . So, we have constructed the term  a 3  of the sequence  ( a n ) .
Now, it is easy to construct the sequence  ( a n )  corresponding to (i) and (ii) by mathematical induction. □
Example 1.
It is easy to verify that  lim y L p ( x , y ) =  for any  p R  and if  p 0 , then  lim y 0 L p ( x , y ) = 0 . Therefore, by the previous theorem:
For any  p R  and  a 1 < a 2  positive numbers, there exists an  ( a n )  increasing  L p -sequence.
For any  p 0  and  a 1 > a 2  positive numbers, there exists an  ( a n )  decreasing  L p -sequence.
The following Theorems 2 and 3 and Corollary 1 generalize and refine, among other things, the results  ( S 2 ) ( S 4 ) , with the exception of (S3)-(ii).
Theorem 2.
Suppose that  K : R + × R + R +  is a mean and a sequence  ( a n )  of positive numbers is a K-sequence. Then, the following statements hold.
(i)
If  a 1 > a 2  and
M 0 ( a , b ) K ( a , b ) for all a , b R + ,
then  1 a n S  (i.e.,  lim n a n = 0 ) and  λ 1 a n = 0 . Moreover, for every  α > 0 , we have
n = 1 a n α a 1 2 α a 1 α a 2 α .
This is a refined and generalized (S2)-(i).
(ii)
If  a 1 < a 2  and
K ( a , b ) M 0 ( a , b ) for all a , b R + ,
then  ( a n ) S  (i.e.,  lim n a n = ) and  λ ( ( a n ) ) = 0 . Moreover, for every  α > 0 , we have
n = 1 1 a n α a 2 a 1 α a 2 α a 1 α .
(iii)
If  a 1 < a 2  and for some increasing function  f : R + R +  there holds
K ( a , b ) M f ( a , b ) for all a , b R + ,
then  ( f ( a n ) ) S  (i.e.,  lim n f ( a n ) = ). Moreover,  f ( a n ) > n f ( a 2 ) f ( a 1 ) 2  for every  n 2  and  ( f ( a n ) ) I 1 .
This is a generalization of (S2)-(ii) and (S3)-(i) (in the case of  K = L  and  f ( x ) = x α , where  α 1 3 ). In this case, function f cannot be decreasing.
(iv)
If  a 1 > a 2  and for some decreasing function  f : R + R +  there holds
M f ( a , b ) K ( a , b ) for all a , b R + ,
then  ( f ( a n ) ) S  (i.e.,  lim n f ( a n ) = ). Moreover,  f ( a n ) > n f ( a 2 ) f ( a 1 ) 2  for every  n 2  and  ( f ( a n ) ) I 1 .
This is a generalization of (S4)-(i) (in the case of  K = L  and  f ( x ) = x α , where  α < 0 ). In this case, function f cannot be increasing.
Proof. 
(i) According to the assumption, for every  n 2 , we have
a n 1 a n + 1 K ( a n 1 , a n + 1 ) = a n thus a n + 1 a n a n a n 1 .
From this, for every  n N , we obtain
a n + 1 a n a 2 a 1 = q < 1 ,
i.e., the sequence  ( a n )  is decreasing. Multiplying these inequalities for  n = 1 , 2 , , k , we obtain
a k + 1 = a k + 1 a k · a k a k 1 a 3 a 2 · a 2 a 1 · a 1 a 1 · q k for all k = 0 , 1 , 2 , .
From (2), we have
1 a n 1 a 1 a 1 a 2 n 1 for all n = 1 , 2 , .
Since  a 1 a 2 > 1 , then  1 a n S  and
0 λ 1 a n = lim sup n log n log 1 a n lim sup n log n log 1 a 1 + ( n 1 ) log a 1 a 2 = 0 .
Then, from (2), for every  α > 0 , we have
n = 1 a n α = k = 0 a k + 1 α k = 0 a 1 α · ( q α ) k = a 1 α · 1 1 q α = a 1 2 α a 1 α a 2 α .
(ii) According to the assumption, for every  n 2 , we have
a n 1 a n + 1 K ( a n 1 , a n + 1 ) = a n thus a n + 1 a n a n a n 1 .
From this, for every  n N , we obtain
a n + 1 a n a 2 a 1 = q > 1 ,
i.e., the sequence  ( a n )  is increasing. Multiplying these inequalities for  n = 1 , 2 , , k , we obtain
a k + 1 = a k + 1 a k · a k a k 1 a 3 a 2 · a 2 a 1 · a 1 a 1 · q k for all k = 0 , 1 , 2 , .
Then, from (3), we have  ( a n ) S  ( lim n a n = ) and
0 λ ( ( a n ) ) = lim sup n log n log a n lim sup n log n log a 1 + ( n 1 ) log q = 0 .
Thus,  λ ( ( a n ) ) = 0  and for every  α > 0  we have
n = 1 1 a n α = k = 0 1 a k + 1 α k = 0 1 a 1 α · a 1 a 2 α k = 1 a 1 α · 1 1 a 1 a 2 α = a 2 a 1 α a 2 α a 1 α .
(iii) Since  ( a n )  is a K-sequence, if  a n 1 < a n  holds for some  n 2 , then  a n a n + 1  necessarily holds. Thus,  a n 1 < a n + 1  and
a n = K ( a n 1 , a n + 1 ) M f ( a n 1 , a n + 1 ) < a n + 1 so a n 1 < a n < a n + 1 ,
since the mean  M f  is a strict one. Then, from the condition  a 1 < a 2 , we obtain  a 2 < a 3 , etc., so the sequence  ( a n )  is increasing. According to the assumptions of this theorem, for every  n 2 , we have
a n = K ( a n 1 , a n + 1 ) M f ( a n 1 , a n + 1 ) = f 1 f ( a n 1 ) + f ( a n + 1 ) 2 .
Therefore, for a  f : R + R +  increasing function the sequence  ( f ( a n ) )  is increasing and for every  n 2  we have
2 f ( a n ) f ( a n 1 ) + f ( a n + 1 ) i . e . , f ( a n ) f ( a n 1 ) f ( a n + 1 ) f ( a n ) .
Then, for every  n N , we have
f ( a n + 1 ) = j = 1 n ( f ( a j + 1 ) f ( a j ) ) + f ( a 1 ) > n . ( f ( a 2 ) f ( a 1 ) ) .
From this, for  n 2  we obtain  f ( a n ) > ( n 1 ) · c n · c 2 , where  c = f ( a 2 ) f ( a 1 )  is a positive constant. Thus,  ( f ( a n ) ) S  and
λ ( ( f ( a n ) ) ) = lim sup n log n log f ( a n ) lim sup n log n log c 2 + log n = 1 .
On the other hand, if  f : R + R +  is a decreasing function, then the sequence  ( f ( a n ) )  is decreasing and for every  n 2 , we have
2 f ( a n ) f ( a n 1 ) + f ( a n + 1 ) i . e . , f ( a n 1 ) f ( a n ) f ( a n ) f ( a n + 1 ) .
Then, for every  n N , we have
f ( a 1 ) f ( a n + 1 ) = j = 1 n ( f ( a j ) f ( a j + 1 ) ) n . ( f ( a 1 ) f ( a 2 ) ) , i . e . ,
f ( a n + 1 ) f ( a 1 ) n · ( f ( a 1 ) f ( a 2 ) ) .
Since, if  f ( a 1 ) > f ( a 2 ) , then we obtain from the above inequality  lim sup n f ( a n ) = , which is a contradiction to the fact that f is a positive function.
(iv) Since  ( a n )  is a K-sequence, then if  a n 1 > a n  holds for some  n 2 , then  a n a n + 1  necessarily holds. Thus,  a n 1 > a n + 1  and
a n = K ( a n 1 , a n + 1 ) M f ( a n 1 , a n + 1 ) > a n + 1 so a n 1 > a n > a n + 1 ,
since the mean  M f  is a strict one. From the condition  a 1 > a 2 , we obtain  a 2 > a 3 , etc., so the sequence  ( a n )  is decreasing. According to the assumptions of the theorem, for every  n 2 , the mean Er,s(x, y) is symmetric in its parameters r and s and its variables x and y as well.
a n = K ( a n 1 , a n + 1 ) M f ( a n 1 , a n + 1 ) = f 1 f ( a n 1 ) + f ( a n + 1 ) 2 .
Therefore, for a  f : R + R +  decreasing function, the sequence  ( f ( a n ) )  is increasing and for every  n 2 , we have
2 f ( a n ) f ( a n 1 ) + f ( a n + 1 ) i . e . , f ( a n ) f ( a n 1 ) f ( a n + 1 ) f ( a n ) .
From this similarly to (iii), we demonstrate that for  n 2  we have  f ( a n ) > n . c 2 , where  c = f ( a 2 ) f ( a 1 )  is a positive constant. Thus,  ( f ( a n ) ) S  and  λ ( ( f ( a n ) ) ) 1 .
On the other hand, if  f : R + R +  is an increasing function, then the sequence  ( f ( a n ) )  is decreasing and for every  n 2 , we have
2 f ( a n ) f ( a n 1 ) + f ( a n + 1 ) i . e . , f ( a n 1 ) f ( a n ) f ( a n ) f ( a n + 1 ) .
Then, for every  n N , we have
f ( a 1 ) f ( a n + 1 ) = j = 1 n ( f ( a j ) f ( a j + 1 ) ) n . ( f ( a 1 ) f ( a 2 ) ) i . e . ,
f ( a n + 1 ) f ( a 1 ) n · ( f ( a 1 ) f ( a 2 ) ) .
Since  f ( a 1 ) > f ( a 2 ) , we obtain the inequality  lim sup n f ( a n ) = , which is a contradiction to the fact that f is a positive function. □
Example 2.
The conditions of (i) of Theorem 2 are satisfied for  L p  means, where  p [ 1 , 0 ] .
The conditions of (ii) of Theorem 2 are satisfied for  L p  means, where  p 1 .
Corollary 1.
Suppose that  K : R + × R + R +  is a mean and a sequence  ( a n )  of positive numbers is a K-sequence. Then, the following statements hold.
(i)
If  a 1 < a 2  and for some  α > 0  there holds
K ( a , b ) M α ( a , b ) for all a , b R + ,
then  ( a n ) S  ( lim n a n = ) and
a n > a 2 α a 1 α 2 1 α n 1 α for every α > 0 and n 2 .
Moreover,  ( a n ) I α .
This is a generalization and refinement of (S2)-(ii) and (S3)-(i) (in case  K = L α 1 3 ).
(ii)
If  a 1 > a 2  and for some  α < 0  there holds
M α ( a , b ) K ( a , b ) for all a , b R + ,
then  ( a n α ) S  ( lim n a n = 0 ) and
a n < a 2 α a 1 α 2 1 α n 1 α for every α < 0 and n 2 .
Moreover,  ( a n α ) I 1 .
This is a generalization and refinement of (S4)-(i) (since in case  K = L  and  α < 0  there holds  M α ( a , b ) M 0 ( a , b ) K ( a , b )  for all  a , b R + ).
Proof. 
(i) Follows from Theorem 2 (iii) by choosing  f ( x ) = x α , for  α > 0 .
(ii) Follows from Theorem 2 (iv) by choosing  f ( x ) = x α , for  α < 0 . □
Theorem 3.
Suppose that  K : R + × R + R +  is a homogeneous mean such that  K ( x , y )  is continuous with respect to y and a sequence  ( a n )  of positive numbers is a K-sequence. Then, the following statements hold.
(i)
If a sequence  ( a n )  is increasing and  M 0 ( x , y ) < K ( x , y )  for all  x , y R + x y , then
lim n a n + 1 a n = 1 and lim n a n q n = 0 for every real q > 1 .
This is a generalization of (S3)-(iii).
(ii)
If a sequence  ( a n )  is decreasing and  M 0 ( x , y ) < K ( x , y )  for all  x , y R + x y , then
lim n a n + 1 a n = 0 and lim n a n q n = 0 for every real q > 0 .
This is a generalization of (S4)-(ii).
(iii)
If a sequence  ( a n )  is increasing and  M 0 ( x , y ) > K ( x , y )  for all  x , y R + x y , then
lim n a n + 1 a n = and n = 1 a n x n is divergent for every real x 0 .
(iv)
If sequence  ( a n )  is decreasing and  M 0 ( x , y ) > K ( x , y )  for all  x , y R + x y , then
lim n a n + 1 a n = 1 and lim n a n q n = 0 for every real q > 1 .
Proof. 
According to the assumptions, for  n 2 , we obtain
a n = K ( a n 1 , a n + 1 ) = a n 1 K 1 , a n + 1 a n 1 .
Therefore,
a n a n 1 = K 1 , a n + 1 a n a n a n 1 .
On the other hand, if  M 0 ( x , y ) < K ( x , y )  for all  x , y R + x y , from the assumption of the theorem, for every  n 2 , we have
a n 1 a n + 1 < K ( a n 1 , a n + 1 ) = a n , thus a n + 1 a n < a n a n 1 .
Since the sequence  a n + 1 a n  is decreasing and  1 < a n + 1 a n  for all  n 2 , if  ( a n )  is increasing, then there exists  lim n a n + 1 a n = x , where  1 x < a 2 a 1 . If the sequence  ( a n )  is decreasing, then obviously  a n + 1 a n < 1  for all  n 2 , and there exists finite  lim n a n + 1 a n = x , where  0 x < a 2 a 1 < 1 .
Since  K ( x , y )  is continuous with respect to y, then taking  n  in (4) gives us  x = K ( 1 , x 2 ) . In the case of  x ( 0 , 1 ) ( 1 , ) , it cannot be true, because from the assumption of (i) and (ii) of this theorem, we have  K ( 1 , x 2 ) > 1 · x 2 = x . Thus,  x = 1  if  ( a n )  is increasing and  x = 0  if  ( a n )  is decreasing. Further, consider the power series
n = 1 a n x n .
(i) If  ( a n )  is an increasing sequence, then from above we have  lim n a n + 1 a n = 1 , which implies that the radius of its convergence is  R = 1 . Thus, for every  0 < x < 1 , the series  n = 1 a n x n  converges. Consequently,  lim n a n x n = 0 . Denoting  q = 1 x , we have  lim n a n q n = 0 .
(ii) If  ( a n )  is a decreasing sequence, then from above we have  lim n a n + 1 a n = 0 , which implies that the radius of convergence R of the considered power series is infinity. Thus, for every real  x > 0 , we have  lim n a n x n = 0 .
In the case of  M 0 ( x , y ) > K ( x , y )  for all  x , y R + x y , from the assumption of the theorem, for every  n 2  we have
a n 1 a n + 1 > K ( a n 1 , a n + 1 ) = a n , thus a n + 1 a n > a n a n 1 .
Since the sequence  a n + 1 a n  is increasing and  1 < a n + 1 a n  for all  n N , in the case when  ( a n )  is increasing there exists  lim n a n + 1 a n = x , where  1 < a 2 a 1 x . If the sequence  ( a n )  is decreasing, then obviously  a n + 1 a n < 1  for all  n N  and there exists  lim n a n + 1 a n = x , where  0 < a 2 a 1 x 1 . Then, taking  n  in (4), we obtain  x = K ( 1 , x 2 ) . This, in the case of  x ( 0 , 1 ) ( 1 , )  cannot be true, because from assumption of (iii), (iv) of the theorem we have  K ( 1 , x 2 ) < 1 · x 2 = x . Thus,  x =  if  ( a n )  is increasing and  x = 1  if  ( a n )  is decreasing.
(iii) If  ( a n )  is an increasing sequence, then  lim n a n + 1 a n = , which implies that the radius of convergence of the considered power series is  R = 0 . Thus, for every real  x 0 , the series  n = 1 a n x n  diverges.
(iv) If  ( a n )  is a decreasing sequence, then  lim n a n + 1 a n = 1 . Further, we perform similarly to (i). □
Example 3.
The conditions of (i) of Theorem 3 are satisfied for  L p  means, where  p > 1 .
The conditions of (ii) of Theorem 3 are satisfied for  L p  means, where  p ( 1 , 0 ] .
The conditions of (iii) of Theorem 3 are satisfied for  L p  means, where  p < 1 .
The conditions of (iv) of Theorem 3 are satisfied for  L p  means, where  p < 1 .
In the context of (S3)-(ii), the following question arises.
Problem 1.
For which means K, there holds that if  ( a n )  is an increasing K-sequence, then there exist constants  c > 0  and  α > 0  such that  a n + 1 a n > c n α  for every  n N ?
In the next part of this section, we will find necessary and sufficient conditions for sequences  ( a n ) S  for which there is such a mean K that  ( a n )  will be a K-sequence.
Theorem 4.
For every increasing sequence  ( a n )  there exists a mean  K ( x , y )  defined on  R + × R + , such that  lim y K ( x , y ) = K ( x , y )  is continuous with respect to x and y, and the sequence  ( a n )  is a K-sequence.
Proof. 
Let  ( a n )  be a given increasing sequence. So, there exists an unique  h ( 0 , ]  such that  ( a n ) S h , i.e.,  lim n a n = h . Therefore,  0 < a 1 < a 2 < a 3 < < h .
Let  f : ( 0 , h ) R +  be an increasing continuous function such that  f ( a n ) = n  for all  n N . Such a function can be, for example:
f ( x ) = x a n a n + 1 a n + n if x [ a n , a n + 1 ) and n N , x a 1 if x ( 0 , a 1 ) .
Now, we choose the mean K defined on  R + × R +  by function f in the following way:
K ( x , y ) = M f ( x , y ) if max { x , y } < h , max { x , y } if max { x , y } h .
Obviously, the mean  K ( x , y )  is a mean such that  lim y K ( x , y ) = .
We show that  K ( x , y )  is continuous with respect to x and y. It is sufficient to prove that, both for x and for y, the proof is the same.
Let  y R +  be arbitrary but fixed. Then, two cases are possible.
If  y h , then  K ( x , y ) = max { x , y } , which is continuous with respect to x.
If  y < h , then
K ( x , y ) = f 1 f ( x ) + f ( y ) 2 if x < h , x if x h .
Since f is continuous on  ( 0 , h ) , therefore  f 1  is also continuous on the interval  ( 0 , ) . So  K ( x , y )  is continuous on the intervals  ( 0 , h )  and  ( h , ) .
On the other hand,  lim x h f ( x ) + f ( y ) 2 =  and  lim z f 1 ( z ) = h , so that
lim x h K ( x , y ) = lim x h f 1 f ( x ) + f ( y ) 2 = h = K ( h , y ) .
So,  K ( x , y )  is continuous at  x = h .
Since  f ( a n ) = n  for all  n N , then for all  n 2 , we have
K ( a n 1 , a n + 1 ) = M f ( a n 1 , a n + 1 ) = f 1 f ( a n 1 ) + f ( a n + 1 ) 2 = = f 1 n 1 + n + 1 2 = f 1 ( n ) = a n .
Further, we denote  S  the system of all nondecreasing sequences  ( a n )  of positive real numbers, such that for every  n 2 , the terms of sequence  ( a n )  satisfy the following condition.
If a n 1 = a n < a n + 1 , then a n + 1 < a n + 2 .
Theorem 5.
The sequence  ( a n ) S  is a K-sequence for some mean  K ( x , y )  defined on  R + × R +  if and only if  ( a n ) S .
Proof. 
“⇒” We assume that  ( a n ) S  is a K-sequence for some mean  K ( x , y )  defined on  R + × R +  and  ( a n ) S . Thus, for every  n 2 , we have  K ( a n 1 , a n + 1 ) = a n  and there exists an integer  k 2  such that  a k 1 = a k < a k + 1 = a k + 2 . Then  a k = K ( a k 1 , a k + 1 ) = K ( a k , a k + 1 )  and  a k + 1 = K ( a k , a k + 2 ) = K ( a k , a k + 1 ) . Therefore,  a k = a k + 1 , which is a contradiction.
“⇐” We assume that  ( a n ) S  is a given nondecreasing sequence. Hence, there exists an unique  h ( 0 , ]  such that  ( a n ) S h , i.e.,  lim n a n = h . We may assume that  0 < a 1 a 2 a 3 h  and the sequence  ( a n )  satisfies the condition (6) for all  n 2 . We choose a nondecreasing function  f : ( 0 , h ] R +  such that we construct it by a method similar to (5) considering the condition (6), in the following way:
Let  f ( a 1 ) = 1  and for every  n N , we have
f ( a n + 1 ) = f ( a n ) if a n = a n + 1 , f ( a n ) + 1 if a n < a n + 1 .
Now, let  x ( 0 , h )  be such that  x a n n = 1 , 2 , 3 , . Thus,  0 < x < a 1  or  a n < x < a n + 1  for some  n N , where  a n < h . If  0 < x < a 1 , then let  f ( x ) = 1 . For simplicity, let us denote  a 0 = 0  and for every  n N  such that  a n < x < a n + 1  with condition  a n < h , we choose a function f on  ( a n , a n + 1 )  in the following way:
f ( x ) = f ( a n ) if a n 1 < a n < x < a n + 1 , f ( a n ) + 1 2 if a n 1 = a n < x < a n + 1 .
By function f for  h ( 0 , ] , we define the following function  K ( x , y )  on  R + × R + :
K ( x , y ) = max min { x , y } , inf f 1 f ( x ) + f ( y ) 2 , if max { x , y } < h , max { x , y } if max { x , y } h .
We shall prove that the function  K ( x , y )  is a mean. If  max { x , y } < h , then
min { x , y } K ( x , y ) max max { x , y } , inf f 1 f ( max { x , y } ) , max { x , y } .
If  max { x , y } h , then trivially  min { x , y } K ( x , y ) max { x , y } .
Further, we show that the sequence  ( a n )  is a K-sequence. Let  n 2 . We have the following four subcases.
(i)
If  a n 1 < a n < a n + 1 , then  f ( a n 1 ) = k 1 f ( a n ) = k f ( a n + 1 ) = k + 1 , where  k 2  is an integer; obviously, we have  a n 2 < a n 1 < a n < a n + 1  or  a n 2 = a n 1 < a n < a n + 1 . Therefore,
K ( a n 1 , a n + 1 ) = max { a n 1 , inf f 1 ( [ k , ) ) } .
Since  f ( a n ) = k , then  a n f 1 ( [ k , ) ) . Thus  inf f 1 ( [ k , ) ) a n . On the other hand, if  x ( a n 1 , a n ) , then
f ( x ) = f ( a n 1 ) = k 1 if a n 2 < a n 1 < x < a n < a n + 1 , f ( a n 1 ) + 1 2 = k 1 2 if a n 2 = a n 1 < x < a n < a n + 1 .
Therefore,  x f 1 ( [ k , ) ) , that is why  x < inf f 1 ( [ k , ) ) a n . From this as  x a n , we obtain  inf f 1 ( [ k , ) ) = a n . Thus,
K ( a n 1 , a n + 1 ) = max { a n 1 , a n } = a n .
(ii)
If  a n 1 = a n = a n + 1 , then  f ( a n 1 ) = f ( a n ) = f ( a n + 1 ) = k , where  k N . Therefore,
K ( a n 1 , a n + 1 ) = max { a n 1 , inf f 1 ( [ k , ) ) } = max { a n , inf f 1 ( [ k , ) ) } .
Since  f ( a n ) = k , then  a n f 1 ( [ k , ) ) , i.e.,  inf f 1 ( [ k , ) ) a n . Therefore,
K ( a n 1 , a n + 1 ) = a n .
(iii)
If  a n 1 < a n = a n + 1 , then  f ( a n 1 ) = k 1 f ( a n ) = f ( a n + 1 ) = k , where  k 2  is an integer and by (6) we have  a n 2 < a n 1 < a n = a n + 1 . Thus
K ( a n 1 , a n + 1 ) = max a n 1 , inf f 1 k 1 2 , .
Since  f ( a n ) = k , then  a n f 1 k 1 2 , . So,  inf f 1 k 1 2 , a n . On the other hand, if  x ( a n 1 , a n ) , then  f ( x ) = f ( a n 1 ) = k 1 . Therefore,  x f 1 k 1 2 , , that is why  x inf f 1 k 1 2 , a n . From this, we obtain
inf f 1 k 1 2 , = a n .
Therefore,  K ( a n 1 , a n + 1 ) = max { a n 1 , a n } = a n .
(iv)
If  a n 1 = a n < a n + 1 , then  f ( a n 1 ) = f ( a n ) = k f ( a n + 1 ) = k + 1 , where  k N  and by (6) we have  a n 1 = a n < a n + 1 < a n + 2 . Hence,
K ( a n 1 , a n + 1 ) = max a n 1 , inf f 1 k + 1 2 , .
Since  f ( a n ) = k < k + 1 2 , then  a n f 1 k + 1 2 , . Thus,
a n inf f 1 k + 1 2 , .
On the other hand, if  x ( a n , a n + 1 )  then  f ( x ) = f ( a n ) + 1 2 = k + 1 2 . Therefore,  x f 1 k + 1 2 , , that is why  a n inf f 1 k + 1 2 , x . From this, we obtain
inf f 1 k + 1 2 , = a n .
Therefore,  K ( a n 1 , a n + 1 ) = max { a n 1 , a n } = a n .
Theorem 6.
The sequence  ( a n )  of positive numbers is a K-sequence for some mean  K ( x , y )  defined on  R + × R +  if and only if the sequence  1 a n  is an M-sequence for some mean  M ( x , y )  defined on  R + × R + .
Proof. 
“⇒” Let sequence  ( a n )  be a K-sequence for some mean  K ( x , y )  defined on  R + × R + , i.e.,  a n = K ( a n 1 , a n + 1 ) for every n 2  integer. We choose a function M defined on  R + × R +  in the following way:
M ( x , y ) = 1 K 1 x , 1 y for x , y R + .
We shall prove that function M is a mean. Since K is a mean, then for every  x , y R + , we have
min 1 x , 1 y K 1 x , 1 y max 1 x , 1 y .
Therefore,
min { x , y } 1 K 1 x , 1 y max { x , y } .
Thus, the function M is a mean. Since sequence  ( a n )  is a K-sequence, then for every  n 2 , we have
M 1 a n 1 , 1 a n + 1 = 1 K ( a n 1 , a n + 1 ) = 1 a n .
Thus, sequence  1 a n  is an M-sequence.
“⇐” The reverse implication can be proved in a similar way. □
Remark 1.
The previous theorem essentially asserts
K ( x , y ) is   a   mean M ( x , y ) = 1 K 1 x , 1 y is   a   mean
hence
a n is a   K - sequence 1 a n is   a   M - sequence .
This gives an alternative way of proving Theorems 1–3. Specifically, it is sufficient to prove only the statements for the increasing cases, and the statements for the decreasing cases can be proved as well, following the previous remark.
For example, the proof of the (iv) part of Theorem 2 would be modified as follows: Let  a 1 > a 2  and  f : R + R +  be a decreasing function such that
M f ( a , b ) K ( a , b ) for all a , b R + .
Denote by  g : R + R +  the function where
g ( x ) = f 1 x .
The function g is obviously increasing. Furthermore, since
g 1 f 1 ( x ) = f f 1 ( x ) = x ,
therefore
g 1 ( x ) = 1 f 1 ( x ) .
Denote  b n = 1 a n  and
M ( x , y ) = 1 K 1 x , 1 y .
Clearly,  b 1 < b 2  and
M ( a , b ) = 1 K 1 a , 1 b 1 M f 1 a , 1 b = 1 f 1 f 1 a + f 1 b 2 = g 1 g ( a ) + g ( b ) 2 = M g ( a , b ) .
That is, the series  ( b n )  satisfies condition (iii) and  f ( a n ) = g ( b n ) . So  f ( a n ) = g ( b n ) S . Furthermore
f ( a n ) = g ( b n ) > n g ( b 2 ) g ( b 1 ) 2 = n f ( a 2 ) f ( a 1 ) 2 .
Corollary 2.
For every decreasing sequence  ( a n )  of positive numbers, there exists a strict mean  K ( x , y )  defined on  R + × R +  such that  lim x K ( x , y ) = 0 K ( x , y )  is continuous with respect to x and y, and the sequence  ( a n )  is a K-sequence.
Proof. 
This is a direct corollary of Theorems 4 and 6. □
We denote  T  the system of all nonincreasing sequences  ( a n )  of positive real numbers such that for every  n 2 , the terms of sequence  ( a n )  satisfy the following condition.
If a n 1 = a n > a n + 1 , then a n + 1 > a n + 2 .
Corollary 3.
A sequence  ( a n ) T  is a K-sequence for some mean  K ( x , y )  defined on  R + × R +  if and only if  ( a n ) T .
Proof. 
This is a direct corollary of Theorems 5 and 6. □
Corollary 4.
A monotone sequence  ( a n ) S T  of positive numbers is a K-sequence for some mean  K ( x , y )  defined on  R + × R +  if and only if  ( a n ) S T .
Proof. 
This is a direct corollary of Theorem 5 and Corollary 3. □

5. Conclusions

In this paper, we investigated sequences of positive real numbers that can be constructed using means.
A condition for the mean K has been determined that is sufficient for the existence of a decreasing K-sequence whose first two terms are given. A similar condition was defined for the increasing case (see Theorem 1).
We have characterized the distribution of the K-sequences in terms of whether the sequences are increasing or decreasing and how the means K relates to the geometric mean (see Theorems 2 and 3).
It has been shown that any strictly monotone sequence can be produced using a certain mean. Specifically, for a given sequence, we defined a mean  M f  that produces the sequence (see Theorem 4 and Corollary 2).

Author Contributions

Conceptualization, J.T.T., F.F., Z.V. and S.S.; writing—original draft preparation, J.T.T. and Z.V.; writing—review and editing, J.T.T., F.F. and S.S.; supervision, J.T.T.; funding acquisition, Z.V. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Acknowledgments

Supported by The Slovak Research and Development Agency under the grant VEGA No. 1/0493/25. The third Author would like to thank the support by the J. Selye University Grant for young researchers and doctoral students (2025). The authors would like to thank the anonymous reviewers for their valuable comments. This article is a revised and expanded version of the conference paper [14].

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Csiba, P.; Filip, F.; Tóth, J.T. Distribution of terms of a logarithmic sequence. Ann. Math. Inform. 2007, 34, 33–45. [Google Scholar]
  2. Šalát, T.; Bukor, J.; Tóth, J.; Zsilinszky, L. Means of positive numbers and certain types of series. Acta Math. Inform. 1992, 1, 49–57. [Google Scholar]
  3. Alzer, H. Exercize 1032. El. Math. 1991, 46, 88. [Google Scholar]
  4. Stolarsky, K.B. Generalizations of the logarithmic mean. Math. Mag. 1975, 48, 87–92. [Google Scholar] [CrossRef]
  5. Alzer, H. Ungleichungen für Mittelwerte. Arch. Math. 1986, 47, 422–426. [Google Scholar] [CrossRef]
  6. Lin, T.P. The power mean and the logarithmic mean. Am. Math. Mon. 1974, 81, 879–883. [Google Scholar] [CrossRef]
  7. Bukor, J.; Tóth, J.T.; Zsilinszky, L. The logarithmic mean and the power mean of positive numbers. Octogon Math. Mag. 1994, 2, 19–24. [Google Scholar]
  8. Carlson, B.C. Algorithms involving arithmetic and geometric means. Am. Math. Mon. 1971, 78, 496–505. [Google Scholar] [CrossRef]
  9. Carlson, B.C. The logarithmic mean. Am. Math. Mon. 1972, 79, 615–618. [Google Scholar] [CrossRef]
  10. Tóth, J.T.; Bukor, J.; Filip, F.; Mišík, L. On ideals defined by asymptotic distribution functions of ratio block sequences. Filomat 2021, 35, 3945–3955. [Google Scholar] [CrossRef]
  11. Toader, G. Some remarks on means. Anal. Numér. Théor. Approx. 1991, 20, 97–109. [Google Scholar]
  12. Pólya, G.; Szegő, G. Problems and Theorems in Analysis I; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1978. [Google Scholar]
  13. Tóth, J.T.; Filip, F.; Bukor, J.; Zsilinszky, L. On I<q- and Iq-convergence of arithmetic functions. Period. Math. Hung. 2021, 82, 125–135. [Google Scholar]
  14. Svitek, S.; Tóth, J.T. On Sequences of Positive Numbers Prescribed by Means. In Proceedings of the Mathematics, Information Technologies and Applied Sciences (MITAV), Brno, Czech Republic, 20–21 June 2024; pp. 117–125. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tóth, J.T.; Filip, F.; Svitek, S.; Václavíková, Z. Characterization of Monotone Sequences of Positive Numbers Prescribed by Means. Mathematics 2025, 13, 696. https://doi.org/10.3390/math13050696

AMA Style

Tóth JT, Filip F, Svitek S, Václavíková Z. Characterization of Monotone Sequences of Positive Numbers Prescribed by Means. Mathematics. 2025; 13(5):696. https://doi.org/10.3390/math13050696

Chicago/Turabian Style

Tóth, János T., Ferdinánd Filip, Szilárd Svitek, and Zuzana Václavíková. 2025. "Characterization of Monotone Sequences of Positive Numbers Prescribed by Means" Mathematics 13, no. 5: 696. https://doi.org/10.3390/math13050696

APA Style

Tóth, J. T., Filip, F., Svitek, S., & Václavíková, Z. (2025). Characterization of Monotone Sequences of Positive Numbers Prescribed by Means. Mathematics, 13(5), 696. https://doi.org/10.3390/math13050696

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop