Average Size of Ramanujan Sum Associated with Divisor Function
Abstract
:1. Introduction
2. Analytic Continuation
3. Proof of Theorem 1
3.1. Estimation of E
3.2. Treatment for M
3.3. Treatment for
3.4. Treatment for
3.5. Treatment for
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chan, T.H.; Kumchev, A.V. On sums of Ramanujan sums. Acta Arithm. 2012, 152, 1–10. [Google Scholar] [CrossRef]
- Nowak, W.G. The average size of Ramanujan sums over quadratic number fields. Arch. Math. 2012, 99, 433–442. [Google Scholar] [CrossRef]
- Zhai, W. The average size of Ramanujan sums over quadratic number fields. Ramanujan J. 2021, 56, 953–969. [Google Scholar] [CrossRef]
- Zhai, W. The average size of Ramanujan sums over quadratic number fields (II). arXiv 2019, arXiv:2019.11111v1. [Google Scholar]
- Chaubey, S.; Goel, S. On the distribution of Ramanujan sums over number fields. Ramanujan J. 2003, 61, 813–837. [Google Scholar] [CrossRef]
- Grytczuk, A. On Ramanujan sums on arithmetical semigroups. Tsukuba J. Math. 1992, 16, 315–319. [Google Scholar] [CrossRef]
- Ma, J.; Sun, H.; Zhai, W. The average size of Ramanujan sums over cubic number fields. Period. Math. Hung. 2023, 87, 215–231. [Google Scholar] [CrossRef]
- Kühn, P.; Robles, N. Explicit formulas of a generalized Ramanujan sum. Int. J. Number Theory 2016, 12, 383–408. [Google Scholar] [CrossRef]
- Robles, N.; Roy, A. Moments of averages of generalized Ramanujan sums. Monatsh. Math. 2017, 182, 433–461. [Google Scholar] [CrossRef]
- Robles, N. Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function. Ph.D. Thesis, University of Zurich, Zurich, Switzerland, 2015. [Google Scholar]
- Kiuchi, I.; Takeda, W. On sums of sums involving the von Mangoldt function. Results Math. 2024, 79, 247. [Google Scholar] [CrossRef]
- Kiuchi, I. On sums of sums involving the Liouville function. Funct. Approx. Comment. Math. 2024, 70, 245–262. [Google Scholar] [CrossRef]
- Kiuchi, I. Sums of logarithmic weights involving r-full numbers. Ramanujan J. 2024, 64, 1045–1059. [Google Scholar] [CrossRef]
- Huxley, M.N. Exponential sums and lattice points. II. Proc. Lond. Math. Soc. 1993, 66, 279–301. [Google Scholar] [CrossRef]
- Kolesnik, G. On the order of ζ(+it) and Δ(R). Pac. J. Math. 1982, 98, 107–122. [Google Scholar] [CrossRef]
- van der Corput, J.G. Zum Teilerproblem. Math. Ann. 1928, 98, 679–716. [Google Scholar] [CrossRef]
- Voronoi, G. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann. Sci. E´cole Norm. Sup. 1904, 21, 207–267. [Google Scholar] [CrossRef]
- Huxley, M.N. Exponential sums and lattice points. III. Proc. Lond. Math. Soc. 2003, 87, 591–609. [Google Scholar] [CrossRef]
- Harfner, J.L. New omega theorems for two classical lattice point problem. Inve. Math. 1981, 63, 181–186. [Google Scholar] [CrossRef]
- Soundararajan, K. Omega results for the divisor and circle problems. Int. Math. Res. Not. 2003, 2003, 1987–1998. [Google Scholar] [CrossRef]
- Heath-Brown, D.R.; Tsang, K.M. Sign changes of E(T), Δ(x), P(x). J. Number Theory 1994, 49, 73–83. [Google Scholar] [CrossRef]
- Tong, K.C. On divisor problem III. Acta Math. Sin. 1956, 6, 515–541. [Google Scholar]
- Tsang, K.M. Higher-power moments of Δ(x), E(t) and P(x). Proc. Lond. Math. Soc. 1992, 65, 65–84. [Google Scholar] [CrossRef]
- Zhai, W. On higher-power moments of Δ(x). Acta Arith. 2004, 112, 367–395. [Google Scholar] [CrossRef]
- Fouvry, É.; Iwaniec, H. The divisor function over arithmetic progressions. Acta Arith. 1992, 61, 271–287. [Google Scholar] [CrossRef]
- Titchmarsh, E.C. The Theory of the Riemann Zeta-Function; Oxford University Press: London, UK, 1986. [Google Scholar]
- Pan, C.; Pan, C. Foundations of Analytic Number Theory; Science Press: Bejing, China, 1990; pp. 149–151. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhai, W. Average Size of Ramanujan Sum Associated with Divisor Function. Mathematics 2025, 13, 697. https://doi.org/10.3390/math13050697
Li X, Zhai W. Average Size of Ramanujan Sum Associated with Divisor Function. Mathematics. 2025; 13(5):697. https://doi.org/10.3390/math13050697
Chicago/Turabian StyleLi, Xin, and Wenguang Zhai. 2025. "Average Size of Ramanujan Sum Associated with Divisor Function" Mathematics 13, no. 5: 697. https://doi.org/10.3390/math13050697
APA StyleLi, X., & Zhai, W. (2025). Average Size of Ramanujan Sum Associated with Divisor Function. Mathematics, 13(5), 697. https://doi.org/10.3390/math13050697