The Exterior Problem of Parabolic Hessian Quotient Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- : u has continuous derivatives up to order i in the spatial variable and up to order j in the time variable .
- (ii)
- : u is continuous in x and t.
- (i)
- for
- (ii)
- is continuous, and
- (i)
- for .
- (ii)
- is continuous, .
3. Principal Result
- Step 1. Formulation of subsolutions and supersolutions
- Step 2. Proof of
- Step 3. Proof of uniqueness and existence
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Caffarelli, L.; Li, Y. An extension to a theorem of Jörgens, Calabi, and Pogorelov. Commun. Pure Appl. Math. 2003, 56, 549–583. [Google Scholar] [CrossRef]
- Bao, J.; Li, H.; Zhang, L. Monge-Ampère equation on exterior domains. Calc. Var. Partial Differ. Equ. 2015, 52, 39–63. [Google Scholar] [CrossRef]
- Dai, L.; Bao, J. On uniqueness and existence of viscosity solutions to Hessian equations in exterior domains. Front. Math. China 2011, 6, 221–230. [Google Scholar] [CrossRef]
- Dai, L. The Dirichlet problem for Hessian quotient equations in exterior domains. J. Math. Anal. Appl. 2011, 380, 87–93. [Google Scholar] [CrossRef]
- Bao, J.; Li, H.; Li, Y. On the exterior Dirichlet problem for Hessian equations. Trans. Am. Math. Soc. 2014, 366, 6183–6200. [Google Scholar] [CrossRef]
- Dai, L. Exterior problems for a parabolic Monge-Ampère equation. Nonlinear Anal. 2014, 100, 99–110. [Google Scholar] [CrossRef]
- Zhou, Z.; Bao, J. On the exterior problem for parabolic k-Hessian equations. Commun. Pure Appl. Anal. 2022, 21, 3407–3420. [Google Scholar] [CrossRef]
- Zhao, H.; Dai, L. Parabolic Hessian Quotient Equation in Exterior Domain. Mathematics 2024, 12, 2132. [Google Scholar] [CrossRef]
- Zhou, Z. On the exterior problem for parabolic Hessian quotient equations. Taiwan. J. Math. 2024, 28, 343–358. [Google Scholar] [CrossRef]
- Jörgens, K. Über die Lösungen der Differentialgleichung rt − s2 = 1. Math. Ann. 1954, 127, 130–134. [Google Scholar] [CrossRef]
- Calabi, E. Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Mich. Math. J. 1958, 5, 105–126. [Google Scholar] [CrossRef]
- Pogorelov, A. On the improper convex affine hyperspheres. Geom. Dedicata 1972, 1, 33–46. [Google Scholar] [CrossRef]
- Cheng, S.; Yau, S. Complete affine hypersurfaces, I. The completeness of affine metrics. Commun. Pure Appl. Math. 1986, 39, 839–866. [Google Scholar] [CrossRef]
- Caffarelli, L. Topics in PDEs: The Monge-Ampère Equation; Graduate course, Courant Institute; New York University: New York, NY, USA, 1995. [Google Scholar]
- Jost, J.; Xin, Y. ome aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on his 90th birthday. Results Math. 2001, 40, 233–245. [Google Scholar] [CrossRef]
- Trudinger, N.; Wang, X. The Bernstein problem for affine maximal hypersurfaces. Invent. Math. 2000, 140, 399–422. [Google Scholar] [CrossRef]
- Gutiérrez, C.E.; Huang, Q. A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation. Indiana Univ. Math. J. 1998, 47, 1459–1480. [Google Scholar] [CrossRef]
- Xiong, J.; Bao, J. On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Ampère equations. J. Differ. Equ. 2011, 250, 367–385. [Google Scholar] [CrossRef]
- Wang, B.; Bao, J. Asymptotic behavior on a kind of parabolic Monge–Ampère equation. J. Differ. Equ. 2015, 259, 344–370. [Google Scholar] [CrossRef]
- Zhang, W.; Bao, J.; Wang, B. An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation. Calc. Var. Partial Differ. Equ. 2018, 57, 90. [Google Scholar] [CrossRef]
- Dai, L.; Bao, J.; Wang, B. Solvability of Hessian quotient equations in exterior domains. Can. J. Math. 2023, 1–31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Dai, L. The Exterior Problem of Parabolic Hessian Quotient Equations. Mathematics 2025, 13, 356. https://doi.org/10.3390/math13030356
Zhao H, Dai L. The Exterior Problem of Parabolic Hessian Quotient Equations. Mathematics. 2025; 13(3):356. https://doi.org/10.3390/math13030356
Chicago/Turabian StyleZhao, Huawei, and Limei Dai. 2025. "The Exterior Problem of Parabolic Hessian Quotient Equations" Mathematics 13, no. 3: 356. https://doi.org/10.3390/math13030356
APA StyleZhao, H., & Dai, L. (2025). The Exterior Problem of Parabolic Hessian Quotient Equations. Mathematics, 13(3), 356. https://doi.org/10.3390/math13030356