A Nekhoroshev-Type Result for a Generalized Boussinesq Equation
Abstract
1. Introduction
Background
2. Main Result
3. Tame Structure and Tame Norm
3.1. Tame Structure
3.2. The Verification of Tame Structure
3.3. Tame Norm
4. Non-Resonant Condition
5. Proofs of the Main Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Hamiltonian Structure
Appendix B. Proof of Iteration Lemma
References
- Nekhoroshev, N.N. An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russ. Math. Surv. 1977, 32, 5–66. [Google Scholar] [CrossRef]
- Niederman, L. Exponential stability for small perturbations of steep integrable Hamiltonian systems. Ergod. Theory Dyn. Syst. 2004, 24, 593–608. [Google Scholar] [CrossRef]
- Poschel, J. Nekhoroshev estimates for quasi-convex hamiltonian systems. Math. Z. 1993, 213, 187–216. [Google Scholar] [CrossRef]
- Nekhoroshev, N.N. Exponential estimates of the stability time of nearly integrable Hamiltonian systems. Part 2. Trudy Sem. Petrovs. 1979, 5, 5–50. [Google Scholar]
- Guzzo, M.; Lega, E.; Froeschl, C. Diffusion and stability in perturbed non-convex integrable systems. Nonlinearity 2006, 19, 1049–1067. [Google Scholar] [CrossRef]
- Niederman, L. Prevalence of exponential stability among nearly integrable Hamiltonian systems. Ergod. Theory Dyn. Syst. 2007, 27, 905–928. [Google Scholar] [CrossRef]
- Benettin, G. Physical Applications of Nekhoroshev Theorem and Exponential Estimates; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2005; pp. 18–61. [Google Scholar]
- Benest, D.; Froeschle, C.; Lega, E. (Eds.) Topics in Gravitational Dynamics: Solar, Extra-Solar and Galactic Systems; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 7–29. [Google Scholar] [CrossRef]
- Guzzo, M. Nekhoroshev stability of quasi-integrable degenerate Hamiltonian systems. In Impact of Modern Dynamics in Astronomy; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Bourgain, J. Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. GAFA 1996, 6, 201–230. [Google Scholar] [CrossRef]
- Bambusi, D.; Grebert, B. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. 2006, 135, 507–567. [Google Scholar] [CrossRef]
- Craig, W.; Wayne, C.E. Newtons method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 1993, 46, 1409–1498. [Google Scholar] [CrossRef]
- Kappler, T.; Mityagin, B. Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator. SIAM J. Math. Anal. 2001, 33, 113–152. [Google Scholar] [CrossRef]
- Cong, H.; Ding, W.; Li, S.; Wang, P. Sub-exponentially long timescale stability for nonlinear Klein-Gordon equation with potential. J. Math. Phys. 2025, 66, 012702. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, J. Long Time stability of Hamiltonian derivative nonlinear Schrödinger equations without potential. Arch. Ration. Mech. Anal. 2025, 249, 41. [Google Scholar] [CrossRef]
- Zhou, S.; Geng, J. A Nekhoroshev type theorem of higher dimensional nonlinear Schrödinger equations. Taiwan J. Math. 2017, 221, 1115–1132. [Google Scholar] [CrossRef]
- Yang, X. A Nekhoroshev-type theorem for the nonlinear schrödinger equations on the d-dimensional torus. Appl. Anal. 2025, 104, 903–923. [Google Scholar] [CrossRef]
- Yang, X. Exponential stability estimate for derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 2025, 143, 108644. [Google Scholar] [CrossRef]
- Boussinesq, M. Théorie générale des mouvements qui sout propagérs dans un canal rectangularire horizontal. CR Acad. Sci. Paris 1871, 73, 256–260. [Google Scholar]
- Boussinesq, M. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. Sect. 1872, 17, 55–108. [Google Scholar]
- Bona, J.L.; Sachs, R.L. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm. Math. Phys. 1988, 118, 15–29. [Google Scholar] [CrossRef]
- Alekseev, D.; Brizitskii, R. Theoretical Analysis of Boundary Value Problems for Generalized Boussinesq Model of Mass Transfer with Variable Coefficients. Symmetry 2022, 14, 2580. [Google Scholar] [CrossRef]
- Boldrini, J.L.; Fernández-Cara, E.; Rojas-Medar, M.A. An Optimal Control Problem for a Generalized Boussinesq Model: The Time Dependent Case. Rev. Mat. Complut. 2007, 20, 339–366. [Google Scholar] [CrossRef]
- Lorca, S.A.; Boldrini, J.L. The initial value problem for a generalized Boussinesq model. Nonlinear Anal. 1999, 36, 457–480. [Google Scholar] [CrossRef]
- Brizitskii, R.V.; Saritskaya, Z.Y.; Kravchuk, R.R. Boundary value and extremum problems for generalized Oberbeck-Boussinesq model. Sib. El. Math. Rep. 2019, 16, 1215–1232. [Google Scholar] [CrossRef]
- Ershkov, S.; Burmasheva, N.; Leshchenko, D.D.; Prosviryakov, E.Y. Exact Solutions of the Oberbeck-Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows. Symmetry 2023, 15, 1730. [Google Scholar] [CrossRef]
- Chen, J.; Guo, B.; Shao, J. Well-posedness and scattering for the generalized Boussinesq equation. SIAM J. Math. Anal. 2023, 55, 133–161. [Google Scholar] [CrossRef]
- Nguyen, P.A.; Raymond, J.-P. Pointwise control of the Boussinesq system. Syst. Control Lett. 2011, 60, 249–255. [Google Scholar] [CrossRef]
- Tanriverdi, T.; Baskonus, H.M.; Mahmud, A.A. Explicit solution of fractional order atmosphere-soil-land plant carbon cycle system. Ecol. Complex. 2021, 48, 100966. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, J.; Xu, X. On quasi-periodic solutions for a generalized Boussinesq equation. Nonlinear Anal. 2014, 105, 50–61. [Google Scholar] [CrossRef]
- Geng, J.; You, J. KAM tori of Hamiltonian perturbations of 1D linear beam equations. J. Math. Anal. Appl. 2003, 277, 104–121. [Google Scholar] [CrossRef]
- Cong, H.; Mi, L.; Shi, Y. Super-exponential stability estimate for the nonlinear Schrödinger equation. J. Funct. Anal. 2022, 283, 109682. [Google Scholar] [CrossRef]
- Cong, H.; Liu, J.; Yuan, X. Stability of KAM Tori for Nonlinear Schrödinger Equation. Mem. Am. Math. Soc. 2014, 239, 1134. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, J. Long time stability of hamiltonian partial differential equations. SIAM J. Math. Anal. 2014, 46, 3176–3222. [Google Scholar] [CrossRef]
- Bambusi, D. Birkhoff normal form for some nonlinear PDEs. Comm. Math. Phys. 2003, 234, 253–283. [Google Scholar] [CrossRef]
- Feola, R.; Massetti, J.E. Sub-exponential stability for the beam equation. J. Differ. Equ. 2023, 356, 188–242. [Google Scholar] [CrossRef]
- Moser, J. On the persistence of pseudo-holomorphic curves on an almost complex torus (with an appendix by Jürgen Pöschel). Invent. Math. 1995, 119, 401–442. [Google Scholar] [CrossRef]
- Xu, J.; Qiu, Q.; You, J. A KAM theorem of degenerate infinite dimensional Hamiltonian system (I). Sci. China Ser.-Math. Phys. Astron. 1996, 39, 372–383. [Google Scholar] [CrossRef]
- Xu, J.; Qiu, Q.; You, J. A KAM theorem of degenerate infinite dimensional Hamiltonian system (II). Sci. China Ser.-Math. Phys. Astron. 1996, 39, 384–394. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Jiang, S. A Nekhoroshev-Type Result for a Generalized Boussinesq Equation. Mathematics 2025, 13, 3955. https://doi.org/10.3390/math13243955
Chen X, Jiang S. A Nekhoroshev-Type Result for a Generalized Boussinesq Equation. Mathematics. 2025; 13(24):3955. https://doi.org/10.3390/math13243955
Chicago/Turabian StyleChen, Xinyi, and Shunjun Jiang. 2025. "A Nekhoroshev-Type Result for a Generalized Boussinesq Equation" Mathematics 13, no. 24: 3955. https://doi.org/10.3390/math13243955
APA StyleChen, X., & Jiang, S. (2025). A Nekhoroshev-Type Result for a Generalized Boussinesq Equation. Mathematics, 13(24), 3955. https://doi.org/10.3390/math13243955
