A Concise Review on the Numerical Treatment of Generalized Fractional Equations
Abstract
1. Introduction
2. Generalized Fractional Models
2.1. Fractional Derivative
- (RL) Let . The following th order Riemann-Liouville fractional derivativeexists almost everywhere. If we further have , then it is well defined in the classical sense.
- (Caputo) Let . Then, we can define the th order Caputo fractional derivative as
2.2. Mathematical Perspective
2.3. Application Perspective
3. Numerical Methods
3.1. Generalized Interpolation Method
3.1.1. gL1 Method
3.1.2. gL1-2 Method
3.1.3. gL2 Method
- when ,
- when ,
- with . To analyze the accuracy of the gL2 method, the main tool is still the residual of the generalized Lagrange interpolation, though the analysis is more technical (see Lemma 2.1 and Theorem 2.1 in [81]). Indeed, this method gives the same order of accuracy as the gL1-2 method, and the convergence analysis for the resulting fully discrete scheme to solve the generalized time fractional problem (3) can be conducted for all ; see [35,81] for details. One drawback of this gL2 method-based fully discrete scheme is that one needs other low-order methods to compute . Fortunately, the convergence order can be kept if a reasonable smaller step size is taken in . Alternatively, one can tackle it using the Hermite interpolation method proposed in [41].
- Non-integer nodes
3.1.4. gL2-1σ Method
3.2. Generalized Convolution Quadrature Method
- The relation between generalized Riemann-Liouville fractional operator and generalized Caputo fractional operator when (see Theorem 2.2 in [85]), given as
- The relation between generalized Riemann-Liouville fractional operator and classical Riemann-Liouville fractional operator (see (2.12) in [85]),where
- From these two relations, it is found that we may construct approximations of (4) by using existing approximation methods of classical Riemann-Liouville fractional derivative, i.e., . Moreover, we need uniform z mesh which is vital in the construction. Fortunately, this uniform z mesh can be achieved by selecting appropriate mesh , such that
3.2.1. gWSGL with Two Shifts
3.2.2. gWSGL with Three Shifts
3.2.3. gWSGL with Four Shifts
3.3. Approximation of
3.3.1. Finite Difference Method for
3.3.2. Compact Finite Difference Method for
3.4. Fully Discrete Scheme
3.4.1. Finite Difference (FD) Method
- for the gL1 method ()
- for the gL2 method ()
- for the gL2-1σ method ()
3.4.2. Compact Finite Difference (CFD) Method
- for the gL1 method ()
- for the gL2 method ()
- for the gL2-1σ method ()
4. Numerical Experiment
- Case A. Take the scale function , the exact solution is known to be
- Case B. Take the scale function , , the exact solution is unknown.
4.1. Numerical Results Using Generalized Interpolation Method and CFD
- Case A: For the smooth case , we set for the gL1 method and for the rest of the methods. For the non-smooth case we set for uniform z mesh and graded z mesh ( for gL1 and f other methods).
- Case B: The exact solution is unknown in this case. We take N = 10,000, to compute a reference solution, and deploy for all methods.
4.2. Numerical Results Using Generalized Convolution Quadrature Method and CFD
- Case A: We set and to compute temporal convergence orders, and set N = 10,000 and to compute spatial convergence orders.
- Case B: The reference solution is calculated using N = 10,000, . Subsequently, we set and to obtain the temporal convergence orders, and let N = 10,000 and to compute the spatial convergence orders.
- The results are presented in Table 3. Obviously, the convergence order is , which is consistent with the theoretical results.
5. Future Prospects
5.1. Generalized Time Fractional Models
5.2. Generalized Space Fractional Models
5.3. Deep Learning Based Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Deng, W. Anomalous and nonergodic multiscale modeling, analyses, and algorithms. Sci. Sin. Math. 2023, 53, 1–29. (In Chinese) [Google Scholar] [CrossRef]
- Deng, W.; Hou, R.; Wang, W.; Xu, P. Modeling Anomalous Diffusion: From Statistics to Mathematics; World Scientific: Singapore, 2020. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space: Anomalous Transport Models; World Scientific: Singapore, 2017. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Noeiaghdam, S.; Sidorov, D. Caputo-Fabrizio Fractional Derivative to Solve the Fractional Model of Energy Supply-Demand System. Math. Model. Eng. Probl. 2020, 7, 359–367. [Google Scholar] [CrossRef]
- Loverro, A. Fractional Calculus: History, Definitions and Aplications for the Engineer. In Rapport Technique; Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering: Notre Dame, IN, USA, 2004; pp. 1–28. [Google Scholar]
- Kolwankar, K.; Gangal, A. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos Interdiscip. J. Nonlinear Sci. 1996, 6, 505–513. [Google Scholar] [CrossRef]
- Nishimoto, K. An Essence of Nishimoto’s Fractional Calculus (Calculus in the 21st Century): Integrations and Differentiations of Arbitrary Order; Descartes Press Company: Waterloo, ON, USA, 1991. [Google Scholar]
- Chen, M.; Deng, W. Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 2014, 52, 1418–1438. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, W.; Karniadakis, G. A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. Numer. Anal. 2018, 56, 3010–3039. [Google Scholar] [CrossRef]
- Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.M.; Ainsworth, M.; et al. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 2020, 404, 109009. [Google Scholar] [CrossRef]
- Deng, W.; Li, B.; Tian, W.; Zhang, P. Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 2018, 16, 125–149. [Google Scholar] [CrossRef]
- Kubica, A.; Yamamoto, M. Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract. Calc. Appl. Anal. 2018, 21, 276–311. [Google Scholar] [CrossRef]
- Sakamoto, K.; Yamamoto, M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar] [CrossRef]
- Deng, W.; Li, B.; Qian, Z.; Wang, H. Time discretization of a tempered fractional Feynman–Kac equation with measure data. SIAM J. Numer. Anal. 2018, 56, 3249–3275. [Google Scholar] [CrossRef]
- Nie, D.; Deng, W. A Unified Convergence Analysis for the Fractional Diffusion Equation Driven by Fractional Gaussian Noise with Hurst Index H ∈ (0, 1). SIAM J. Numer. Anal. 2022, 60, 1548–1573. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.; Zhou, Z. Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 2016, 38, A146–A170. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.; Zhou, Z. Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview. Comput. Methods Appl. Mech. Engrg. 2019, 346, 332–358. [Google Scholar] [CrossRef]
- Jin, B.; Li, B.; Zhou, Z. An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 2018, 38, 518–541. [Google Scholar] [CrossRef]
- Jin, B.; Li, B.; Zhou, Z. Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 2018, 56, 1–23. [Google Scholar] [CrossRef]
- Stynes, M. Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 2016, 19, 1554–1562. [Google Scholar] [CrossRef]
- Stynes, M.; O’Riordan, E.; Gracia, J. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 2017, 55, 1057–1079. [Google Scholar] [CrossRef]
- Cao, J.; Xu, W. Adaptive-coefficient finite difference frequency domain method for time fractional diffusive-viscous wave equation arising in geophysics. Appl. Math. Lett. 2025, 160, 109337. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.; Zhou, Z. An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 2016, 36, 197–221. [Google Scholar] [CrossRef]
- Kopteva, N.; Meng, X. Error analysis for a fractional-derivative parabolic problem on quasi-graded meshes using barrier functions. SIAM J. Numer. Anal. 2020, 58, 1217–1238. [Google Scholar] [CrossRef]
- Liao, H.L.; Li, D.; Zhang, J. Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 2018, 56, 1112–1133. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Wu, X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef]
- Alikhanov, A.; Huang, C. A high-order L2 type difference scheme for the time-fractional diffusion equation. Appl. Math. Comput. 2021, 411, 126545. [Google Scholar] [CrossRef]
- Alikhanov, A.; Huang, C. A class of time-fractional diffusion equations with generalized fractional derivatives. J. Comput. Appl. Math. 2022, 414, 114424. [Google Scholar] [CrossRef]
- Chen, H.; Stynes, M. Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 2019, 79, 624–647. [Google Scholar] [CrossRef]
- Kopteva, N. Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem. Math. Comp. 2021, 90, 19–40. [Google Scholar] [CrossRef]
- Liao, H.L.; McLean, W.; Zhang, J. A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem. Commun. Comput. Phys. 2021, 30, 567–601. [Google Scholar] [CrossRef]
- Lv, C.; Xu, C. Error Analysis of A High Order Method for Time-Fractional Diffusion Equations. SIAM J. Sci. Comput. 2016, 38, A2699–A2724. [Google Scholar] [CrossRef]
- Quan, C.; Wu, X. H1-norm stability and convergence of an L2-type method on nonuniform meshes for subdiffusion equation. SIAM J. Numer. Anal. 2023, 61, 2106–2132. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, L. A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. Appl. Math. Comput. 2019, 342, 71–93. [Google Scholar] [CrossRef]
- Cao, J.X.; Li, C.P.; Chen, Y.Q. High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (II). Fract. Calc. Appl. Anal. 2015, 18, 735–761. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Li, C. High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III). J. Comput. Appl. Math. 2016, 299, 159–175. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Z.; Zhang, H. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719. [Google Scholar] [CrossRef]
- Lubich, C. Convolution quadrature and discretized operational calculus. I. Numer. Math. 1988, 52, 129–145. [Google Scholar] [CrossRef]
- Lubich, C. Convolution quadrature and discretized operational calculus. II. Numer. Math. 1988, 52, 413–425. [Google Scholar] [CrossRef]
- Lubich, C. Convolution quadrature revisited. BIT Numer. Math. 2004, 44, 503–514. [Google Scholar] [CrossRef]
- Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 37. [Google Scholar]
- Cuesta, E.; Lubich, C.; Palencia, C. Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 2006, 75, 673–696. [Google Scholar] [CrossRef]
- Akrivis, G.; Chen, M.; Han, J.; Yu, F.; Zhang, Z. The variable two-step BDF method for parabolic equations. BIT Numer. Math. 2024, 64, 14. [Google Scholar] [CrossRef]
- Li, Z.; Liao, H.L. Stability of variable-step BDF2 and BDF3 methods. SIAM J. Numer. Anal. 2022, 60, 2253–2272. [Google Scholar] [CrossRef]
- Liao, H.L.; Tang, T.; Zhou, T. Discrete energy analysis of the third-order variable-step BDF time-stepping for diffusion equations. J. Comput. Math. 2023, 41, 325–344. [Google Scholar] [CrossRef]
- Liao, H.L.; Zhang, Z. Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comp. 2021, 90, 1207–1226. [Google Scholar] [CrossRef]
- Pei, L.; Wei, Y.; Zhang, J. Unconditional optimal H1-norm error estimate and superconvergence analysis of a linearized nonconforming finite element variable-time-step BDF2 method for the nonlinear complex Ginzburg–Landau equation. Commun. Nonlinear Sci. Numer. Simul. 2024, 138, 108193. [Google Scholar] [CrossRef]
- Tian, W.; Zhou, H.; Deng, W. A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 2015, 84, 1703–1727. [Google Scholar] [CrossRef]
- Akrivis, G.; Chen, M.; Yu, F. The weighted and shifted seven-step BDF method for parabolic equations. IMA J. Numer. Anal. 2024, drae089. [Google Scholar] [CrossRef]
- Agrawal, O.P. Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal. 2012, 15, 700–711. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Deng, W.; Xu, P. Feynman–Kac Transform for Anomalous Processes. SIAM J. Math. Anal. 2021, 53, 6017–6047. [Google Scholar] [CrossRef]
- Kilbas, A.; Marichev, O.; Samko, S. Fractional Integrals and Derivatives (Theory and Applications); Gordon and Breach: Montreux, Switzerland, 1993. [Google Scholar]
- De Oliveira, E.; Machado, J. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Atangana, A.; Doungmo Goufo, E. Extension of matched asymptotic method to fractional boundary layers problems. Math. Probl. Eng. 2014, 2014, 107535. [Google Scholar] [CrossRef]
- Kiryakova, V. Generalized Fractional Calculus and Applications; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Mathai, A.; Haubold, H. Erdélyi-Kober Fractional Calculus: From a Statistical Perspective, Inspired by Solar Neutrino Physics; Springer: Berlin/Heidelberg, Germany, 2018; Volume 31. [Google Scholar]
- Pagnini, G. Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 2012, 15, 117–127. [Google Scholar] [CrossRef]
- Plociniczak, L. Approximation of the Erdélyi–Kober operator with application to the time-fractional Porous medium equation. SIAM J. Appl. Math. 2014, 74, 1219–1237. [Google Scholar] [CrossRef]
- Plociniczak, L.; Świtala, M. Numerical scheme for Erdélyi–Kober fractional diffusion equation using Galerkin–Hermite method. Fract. Calc. Appl. Anal. 2022, 25, 1651–1687. [Google Scholar] [CrossRef]
- Luchko, Y.; Trujillo, J. Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 2007, 10, 249–267. [Google Scholar]
- Tawfik, A.M.; Abdelhamid, H.M. Generalized fractional diffusion equation with arbitrary time varying diffusivity. Appl. Math. Comput. 2021, 410, 126449. [Google Scholar] [CrossRef]
- Agrawal, O. Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. 2010, 59, 1852–1864. [Google Scholar] [CrossRef]
- Xu, Y.; Agrawal, O. Models and numerical schemes for generalized van der Pol equations. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3575–3589. [Google Scholar] [CrossRef]
- Xu, Y.; Agrawal, O. Models and numerical solutions of generalized oscillator equations. J. Vib. Acoust. 2014, 136, 050903. [Google Scholar] [CrossRef]
- Meerschaert, M.; Scheffler, H.P. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probability 2004, 41, 623–638. [Google Scholar] [CrossRef]
- Chen, Z.Q. Time fractional equations and probabilistic representation. Chaos Solitons Fractals 2017, 102, 168–174. [Google Scholar] [CrossRef]
- Gu, X.M.; Huang, T.Z.; Zhao, Y.L.; Lyu, P.; Carpentieri, B. A fast implicit difference scheme for solving the generalized time–space fractional diffusion equations with variable coefficients. Numer. Methods Partial. Differ. Equ. 2021, 37, 1136–1162. [Google Scholar] [CrossRef]
- Khibiev, A.; Alikhanov, A.; Huang, C. A second-order difference scheme for generalized time-fractional diffusion equation with smooth solutions. Comput. Methods Appl. Math. 2024, 24, 101–117. [Google Scholar] [CrossRef]
- Li, X.; Wong, P. Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations. J. Appl. Math. Comput. 2023, 69, 4689–4716. [Google Scholar] [CrossRef]
- Li, X.; Wong, P.; Alikhanov, A. Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution. J. Comput. Appl. Math. 2025, 464, 116473. [Google Scholar] [CrossRef]
- Xu, Y.; He, Z.; Agrawal, O.P. Numerical and analytical solutions of new generalized fractional diffusion equation. Comput. Math. Appl. 2013, 66, 2019–2029. [Google Scholar] [CrossRef]
- Ding, Q.; Wong, P. A higher order numerical scheme for generalized fractional diffusion equations. Internat. J. Numer. Methods Fluids 2020, 92, 1866–1889. [Google Scholar] [CrossRef]
- Ding, Q.; Wong, P. A new approximation for the generalized fractional derivative and its application to generalized fractional diffusion equation. Numer. Methods Partial. Differ. Equ. 2021, 37, 643–673. [Google Scholar] [CrossRef]
- Li, X.; Wong, P. A gWSGL numerical scheme for generalized fractional sub-diffusion problems. Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 104991. [Google Scholar] [CrossRef]
- Li, X.; Wong, P. Generalized Alikhanov’s approximation and numerical treatment of generalized fractional sub-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 2021, 97, 105719. [Google Scholar] [CrossRef]
- Li, X.; Wong, P. gL1 scheme for solving a class of generalized time-fractional diffusion equations. Mathematics 2022, 10, 1219. [Google Scholar] [CrossRef]
- Cockburn, B.; Mustapha, K. A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 2015, 130, 293–314. [Google Scholar] [CrossRef]
- Mustapha, K.; McLean, W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 2011, 56, 159–184. [Google Scholar] [CrossRef]
- Mustapha, K.; McLean, W. Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 2013, 51, 491–515. [Google Scholar] [CrossRef]
- Xu, Q.; Hesthaven, J. Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 2014, 52, 405–423. [Google Scholar] [CrossRef]
- Deng, W.; Hesthaven, J. Local Discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 2013, 47, 1845–1864. [Google Scholar] [CrossRef]
- Harizanov, S.; Lazarov, R.; Margenov, S. A survey on numerical methods for spectral space-fractional diffusion problems. Fract. Calc. Appl. Anal. 2020, 23, 1605–1646. [Google Scholar] [CrossRef]
- Hou, D.; Xu, C. A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 2017, 43, 911–944. [Google Scholar] [CrossRef]
- Zayernouri, M.; Karniadakis, G. Fractional spectral collocation method. SIAM J. Sci. Comput. 2014, 36, A40–A62. [Google Scholar] [CrossRef]
- Kumar, K.; Pandey, R.; Sultana, F. Numerical schemes with convergence for generalized fractional integro-differential equations. J. Comput. Appl. Math. 2021, 388, 113318. [Google Scholar] [CrossRef]
- Xu, Y.; He, Z.; Xu, Q. Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative. Int. J. Comput. Math. 2014, 91, 588–600. [Google Scholar] [CrossRef]
- Kumar, K.; Pandey, A.; Pandey, R. High Order Numerical Scheme for Generalized Fractional Diffusion Equations. Int. J. Appl. Comput. Math. 2024, 10, 105. [Google Scholar] [CrossRef]
- Kumari, S.; Pandey, R.; Agarwal, R. High-Order Approximation to Generalized Caputo Derivatives and Generalized Fractional Advection–Diffusion Equations. Mathematics 2023, 11, 1200. [Google Scholar] [CrossRef]
- Shi, J.; Chen, M.; Yan, Y.; Cao, J. Correction of High-Order Lk Approximation for Subdiffusion. J. Sci. Comput. 2022, 93, 31. [Google Scholar] [CrossRef]
- Sun, Z.Z. An unconditionally stable and O(τ2 + h4) order L∞ convergent difference scheme for linear parabolic equations with variable coefficients. Numer. Methods Partial. Differ. Equ. 2001, 17, 619–631. [Google Scholar] [CrossRef]
- Acosta, G.; Borthagaray, J. A fractional Laplace equation: Regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 2017, 55, 472–495. [Google Scholar] [CrossRef]
- Bonito, A.; Borthagaray, J.; Nochetto, R.; Otárola, E.; Salgado, A. Numerical methods for fractional diffusion. Comput. Vis. Sci. 2018, 19, 19–46. [Google Scholar] [CrossRef]
- Borthagaray, J.; Nochetto, R. Constructive approximation on graded meshes for the integral fractional Laplacian. Constr. Approx. 2023, 57, 463–487. [Google Scholar] [CrossRef]
- Faustmann, M.; Marcati, C.; Melenk, J.; Schwab, C. Exponential Convergence of-FEM for the Integral Fractional Laplacian in Polygons. SIAM J. Numer. Anal. 2023, 61, 2601–2622. [Google Scholar] [CrossRef]
- Han, R.; Wu, S. A monotone discretization for integral fractional Laplacian on bounded Lipschitz domains: Pointwise error estimates under Hölder regularity. SIAM J. Numer. Anal. 2022, 60, 3052–3077. [Google Scholar] [CrossRef]
- Hao, Z.; Zhang, Z.; Du, R. Fractional Centered Difference Scheme for High-Dimensional Integral Fractional Laplacian. J. Comput. Phys. 2021, 424, 109851. [Google Scholar] [CrossRef]
- Huang, Y.; Oberman, A. Numerical methods for the fractional Laplacian: A finite difference-quadrature approach. SIAM J. Numer. Anal. 2014, 52, 3056–3084. [Google Scholar] [CrossRef]
- Huang, Y.; Oberman, A. Finite difference methods for fractional Laplacians. arXiv 2016, arXiv:1611.00164. [Google Scholar] [CrossRef]
- Antil, H.; Dondl, P.; Striet, L. Analysis of a Sinc-Galerkin method for the fractional Laplacian. SIAM J. Numer. Anal. 2023, 61, 2967–2993. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- E, W.; Yu, B. The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Zang, Y.; Bao, G.; Ye, X.; Zhou, H. Weak adversarial networks for high-dimensional partial differential equations. J. Comput. Phys. 2020, 411, 109409. [Google Scholar] [CrossRef]
- Han, J.; Jentzen, A.; E, W. Solving high-dimensional partial differential equations using deep learning. Proc. Nat. Acad. Sci. USA 2018, 115, 8505–8510. [Google Scholar] [CrossRef]
- Guo, L.; Wu, H.; Yu, X.; Zhou, T. Monte Carlo fPINNs: Deep learning method for forward and inverse problems involving high dimensional fractional partial differential equations. Comput. Methods Appl. Mech. Engrg. 2022, 400, 115523. [Google Scholar] [CrossRef]
- Pang, G.; Lu, L.; Karniadakis, G. fPINNs: Fractional physics-informed neural networks. SIAM J. Sci. Comput. 2019, 41, A2603–A2626. [Google Scholar] [CrossRef]
- Gu, Y.; Ng, M. Deep Ritz Method for the Spectral Fractional Laplacian Equation Using the Caffarelli–Silvestre Extension. SIAM J. Sci. Comput. 2022, 44, A2018–A2036. [Google Scholar] [CrossRef]
- Gulian, M.; Raissi, M.; Perdikaris, P.; Karniadakis, G. Machine learning of space-fractional differential equations. SIAM J. Sci. Comput. 2019, 41, A2485–A2509. [Google Scholar] [CrossRef]
- Hao, Z.; Park, M.; Cai, Z. Neural Network Method for Integral Fractional Laplace Equations. East Asian J. Appl. Math. 2022, 13, 95–118. [Google Scholar] [CrossRef]
- Hu, Z.; Kawaguchi, K.; Zhang, Z.; Karniadakis, G. Tackling the Curse of Dimensionality in Fractional and Tempered Fractional PDEs with Physics-Informed Neural Networks. arXiv 2024, arXiv:2406.11708. [Google Scholar] [CrossRef]
- Zeng, L.; Wan, X.; Zhou, T. Adaptive Deep Density Approximation for Fractional Fokker–Planck Equations. J. Sci. Comput. 2023, 97, 68. [Google Scholar] [CrossRef]
| Method | Case A: | |||||||
|---|---|---|---|---|---|---|---|---|
| Case A | Case B | Uniform Mesh | Graded Mesh | |||||
| gL1 | 5.193 | - | 3.233 | - | 3.206 | - | 6.031 | - |
| 1.534 | 1.76 | 9.766 | 1.73 | 1.402 | 1.19 | 1.722 | 1.81 | |
| 4.510 | 1.77 | 2.919 | 1.74 | 6.204 | 1.18 | 4.936 | 1.80 | |
| gL1-2 | 3.320 | - | 2.536 | - | 2.286 | - | 2.495 | - |
| 4.921 | 2.75 | 3.775 | 2.75 | 1.024 | 1.16 | 3.265 | 2.93 | |
| 7.224 | 2.77 | 5.580 | 2.76 | 4.593 | 1.16 | 4.714 | 2.79 | |
| gL2-1σ | 1.608 | - | 2.818 | - | 2.327 | - | 4.055 | - |
| 4.040 | 1.99 | 7.169 | 1.97 | 1.019 | 1.19 | 9.487 | 2.10 | |
| 1.013 | 2.00 | 1.810 | 1.99 | 4.513 | 1.17 | 2.293 | 2.05 | |
| gL2 | 3.320 | - | 2.536 | - | 1.480 | - | 2.521 | - |
| 4.920 | 2.75 | 3.775 | 2.75 | 6.604 | 1.16 | 3.297 | 2.93 | |
| 7.224 | 2.77 | 5.580 | 2.76 | 2.934 | 1.17 | 4.193 | 2.98 | |
| gL1 | gL1-2 | gL2-1σ | gL2 | |||||
|---|---|---|---|---|---|---|---|---|
| Case A | 6.633 | - | 6.635 | - | 6.635 | - | 6.635 | - |
| 4.087 | 4.02 | 4.113 | 4.01 | 4.111 | 4.01 | 4.113 | 4.01 | |
| 2.324 | 4.14 | 2.565 | 4.00 | 2.549 | 4.01 | 2.565 | 4.00 | |
| Case B | 1.424 | - | 1.424 | - | 1.424 | - | 1.424 | - |
| 8.908 | 4.00 | 8.909 | 4.00 | 8.909 | 4.00 | 8.909 | 4.00 | |
| 5.567 | 4.00 | 5.570 | 4.00 | 5.570 | 4.00 | 5.570 | 4.00 | |
| s | Case A | Case B | Case A | Case B | ||||
|---|---|---|---|---|---|---|---|---|
| 1.545 | - | 6.900 | - | 6.635 | - | 1.424 | - | |
| 3.916 | 1.98 | 1.772 | 1.96 | 4.106 | 4.01 | 8.909 | 4.00 | |
| 9.857 | 1.99 | 4.484 | 1.98 | 2.505 | 4.03 | 5.573 | 4.00 | |
| 5.708 | - | 5.132 | - | 6.635 | - | 1.424 | - | |
| 7.159 | 3.00 | 6.337 | 3.02 | 4.113 | 4.01 | 8.908 | 4.00 | |
| 8.963 | 3.00 | 7.871 | 3.01 | 2.565 | 4.00 | 5.566 | 4.00 | |
| 3.623 | - | 9.554 | - | 6.635 | - | 1.424 | - | |
| 2.168 | 4.06 | 6.362 | 3.91 | 4.113 | 4.01 | 8.908 | 4.00 | |
| 1.303 | 4.06 | 4.045 | 3.98 | 2.565 | 4.00 | 5.566 | 4.00 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wong, P.J.Y. A Concise Review on the Numerical Treatment of Generalized Fractional Equations. Mathematics 2025, 13, 3713. https://doi.org/10.3390/math13223713
Li X, Wong PJY. A Concise Review on the Numerical Treatment of Generalized Fractional Equations. Mathematics. 2025; 13(22):3713. https://doi.org/10.3390/math13223713
Chicago/Turabian StyleLi, Xuhao, and Patricia J. Y. Wong. 2025. "A Concise Review on the Numerical Treatment of Generalized Fractional Equations" Mathematics 13, no. 22: 3713. https://doi.org/10.3390/math13223713
APA StyleLi, X., & Wong, P. J. Y. (2025). A Concise Review on the Numerical Treatment of Generalized Fractional Equations. Mathematics, 13(22), 3713. https://doi.org/10.3390/math13223713

