Cauchy Problems for Semilinear Parabolic Equations in Grand Herz Spaces
Abstract
1. Introduction
- 1.
- The semilinear heat equation:
- 2.
- The Burgers viscous equation:
2. Preliminaries
3. Main Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weissler, F.B. Semilinear evolution equations in Banach spaces. J. Funct. Anal. 1979, 32, 277–296. [Google Scholar] [CrossRef]
- Weissler, F.B. Local existence and nonexistence for semilinear parabolic equations in Lp. Indiana Univ. Math. J. 1980, 29, 79–102. [Google Scholar] [CrossRef]
- Giga, Y. Solutions for semilinear parabolic equations in Lp and the regularity of weak solutions of the Navier Stokes system. J. Differ. Equ. 1986, 61, 186–212. [Google Scholar] [CrossRef]
- Brezis, H.; Cazenave, T. A nonlinear heat equation with singular initial data. J. Anal. Math. 1996, 68, 277–304. [Google Scholar] [CrossRef]
- Ribaud, F. Cauchy problem for semilinear parabolic equation with data in spaces. Rev. Mat. Iberoramericana 1998, 14, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Terraneo, E. Non-uniqueness for a critical non-linear heat equation. Comm. Partial Differ. Equ. 2002, 27, 185–218. [Google Scholar] [CrossRef]
- Miao, C.; Zhang, B. The Cauchy problem for semilinear parabolic equations in Besov spaces. Houst. J. Math. 2004, 30, 829–878. [Google Scholar]
- Aguilar Crespo, J.A.; Peral Alonso, I. Global behavior of the Cauchy problem for some critical nonlinear parabolic equations. SIAM J. Math. Anal. 2000, 31, 1270–1294. [Google Scholar] [CrossRef]
- Escobedo, M.; Herrero, M. A semilinear parabolic system in a bounded domain. Ann. Mat. Pura Appl. 1993, 165, 315–336. [Google Scholar] [CrossRef]
- Egorov, Y.; Galaktionov, V.; Kondratiev, V.; Pohozaev, S. Global solutions of higher-order semilinear parabolic equations in the supercritical range. Adv. Differ. Equ. 2004, 9, 1009–1038. [Google Scholar] [CrossRef]
- Henry, D. Geometric Theory of Semilinear Parabolic Equations; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; Volume 840. [Google Scholar]
- Magal, P.; Ruan, S. Theory and applications of abstract semilinear Cauchy problems. In Applied Mathematical Sciences; Springer: Berlin/Heidelberg, Germany, 2018; Volume 201. [Google Scholar]
- Lu, S.; Yang, D.; Hu, G. Herz Type Spaces and Their Applications; Science Press: Beijng, China, 2008. [Google Scholar]
- Douadi, D. Semilinear parabolic equations in Herz spaces. Appl. Anal. 2023, 11, 3043–3063. [Google Scholar]
- Greco, L.; Iwaniec, T.; Sbordone, C. Inverting the p-harmonic operator. Manuscripta Math. 1997, 92, 249–258. [Google Scholar] [CrossRef]
- Iwaniec, T.; Sbordone, C. On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 1992, 119, 129–143. [Google Scholar] [CrossRef]
- D’Onofrio, L.; Sbordone, C.; Schiattarella, R. Grand Sobolev spaces and their applications in geometric function theory and PDEs. J. Fixed Point Theory Appl. 2013, 13, 309–340. [Google Scholar] [CrossRef]
- Fiorenza, A.; Formica, M.; Gogatishvili, A. On grand and small Lebesgue and Sobolev spaces and some applications to PDE’s. Differ. Equ. Appl. 2018, 10, 21–46. [Google Scholar] [CrossRef]
- Glimm, J. Nonlinear and stochastic phenomena: The grand challenge for partial differential equations. SIAM Rev. 1991, 33, 626–643. [Google Scholar] [CrossRef]
- Kokilashvili, V.; Meskhi, A. A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces. Georgian Math. J. 2009, 16, 547–551. [Google Scholar] [CrossRef]
- Kokilashvili, V.; Meskhi, A. Trace inequalities for fractional integrals in grand Lebesgue spaces. Stud. Math. 2012, 210, 159–176. [Google Scholar] [CrossRef]
- Kokilashvili, V.; Meskhi, A. Potentials with product kernels in grand Lebesgue spaces: One-weight criteria. Lith. Math. J. 2013, 53, 27–39. [Google Scholar] [CrossRef]
- Kokilashvili, V.; Meskhi, A.; Rafeiro, H.; Samko, S. Integral Operators in Non-Standard Function Spaces. In Operator Theory: Advances and Applications; Birkhäuser: Cham, Switzerland, 2016; Volume 248. [Google Scholar]
- Rafeiro, H.; Samko, S.; Umarkhadzhiev, S. Grand Lebesgue sequence spaces. Georgian Math. J. 2018, 25, 291–302. [Google Scholar] [CrossRef]
- Nafis, H.; Rafeiro, H.; Zaighum, M.A. A note on the boundedness of sublinear operators on grand variable Herz spaces. J. Inequal. Appl. 2020, 2020, 1. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Diening, L.; Hästö, P.; Roudenko, S. Function spaces of variable smoothness and integrability. J. Funct. Anal. 2009, 256, 1731–1768. [Google Scholar] [CrossRef]
- Hammad, N. Boundedness of sublinear operators on two-weighted grand Herz spaces with variable exponent. J. Inequal. Appl. 2025, 2025, 28. [Google Scholar]
- Zhao, Y.; Yang, D.; Zhang, Y. Mixed-norm Herz spaces and their applications in related Hardy spaces. Anal. Appl. 2023, 21, 1131–1222. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Liu, R. Cauchy Problems for Semilinear Parabolic Equations in Grand Herz Spaces. Mathematics 2025, 13, 3679. https://doi.org/10.3390/math13223679
He S, Liu R. Cauchy Problems for Semilinear Parabolic Equations in Grand Herz Spaces. Mathematics. 2025; 13(22):3679. https://doi.org/10.3390/math13223679
Chicago/Turabian StyleHe, Suixin, and Ronghui Liu. 2025. "Cauchy Problems for Semilinear Parabolic Equations in Grand Herz Spaces" Mathematics 13, no. 22: 3679. https://doi.org/10.3390/math13223679
APA StyleHe, S., & Liu, R. (2025). Cauchy Problems for Semilinear Parabolic Equations in Grand Herz Spaces. Mathematics, 13(22), 3679. https://doi.org/10.3390/math13223679
