Certain Subclasses of Bi-Univalent Functions Involving Caputo Fractional Derivatives with Bounded Boundary Rotation
Abstract
1. Introduction
- (1)
- Plots with BBR region
- (2)
- Proof of Total Variation
- For :Numerical computation shows thatso the tangent vector of the image makes exactly two full turns.
- For :Numerical computation shows thatso the tangent vector of the image makes exactly one full turn.
2. Coefficient Bounds and Sharp Fekete–Szegö Results in the Function Class
3. A Class of Analytic Functions Associated with the Caputo Fractional Derivative Operator
- If
- or if
- 1.
- The second coefficient satisfies
- 2.
- The third coefficient satisfies
- 3.
- Moreover, the Fekete–Szegö functional obeys the boundwhere
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Pinchuk, B. Functions of bounded boundary rotation. Isr. J. Math. 1971, 10, 6–16. [Google Scholar] [CrossRef]
- Noonan, J.W. Asymptotic behavior of functions with bounded boundary rotation. Trans. Am. Math. Soc. 1972, 164, 397–410. [Google Scholar] [CrossRef]
- Padmanabhan, K.S.; Parvatham, R. Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 1975, 31, 311–323. [Google Scholar] [CrossRef]
- Alkahtani, B.S.T.; Goswami, P.; Bulboacă, T. Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions. Miskolc Math. Notes 2016, 17, 739–748. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis; Academic Press: London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications (Kuwait, 1985); KFAS Proc. Ser. 3; Pergamon: Oxford, UK, 1985; pp. 53–60. [Google Scholar]
- Lupaş, A.A.; Tayyah, A.S.; Sokół, J. Sharp Bounds on Hankel Determinants for Starlike Functions Defined by Symmetry with Respect to Symmetric Domains. Symmetry 2025, 17, 1244. [Google Scholar] [CrossRef]
- Jothibasu, J. Certain subclasses of bi-univalent functions defined by Sălăgean operator. Electron. J. Math. Anal. Appl. 2015, 3, 150–157. [Google Scholar]
- Olatunji, S.O.; Ajai, P.T. On subclasses of bi-univalent functions of Bazilevic type involving linear and Salagean operator. Int. J. Pure Appl. Math. 2014, 92, 645–656. [Google Scholar] [CrossRef]
- El-Ityan, M.; Sabri, M.A.; Hammad, S.; Frasin, B.; Al-Hawary, T.; Yousef, F. Third-Order Hankel Determinant for a Class of Bi-Univalent Functions Associated with Sine Function. Mathematics 2025, 13, 2887. [Google Scholar] [CrossRef]
- Shaba, T.G. Certain new subclasses of analytic and bi-univalent functions using Salagean operator. Asia Pac. J. Math. 2020, 7, 29. [Google Scholar]
- Murugusundaramoorthy, G.; Thilagavathi, K. Coefficient estimate of bi-univalent functions involving Caputo fractional calculus operator. Southeast Asian Bull. Math. 2014, 38, 433–444. [Google Scholar]
- Alsager, K.M.; Murugusundaramoorthy, G.; Catas, A.; El-Deeb, S.M. Applications of Caputo-type fractional derivatives for subclasses of bi-univalent functions with bounded boundary rotation. Fractal Fract. 2024, 8, 501. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. An application of the fractional derivative. Math. Jpn. 1984, 29, 383–389. [Google Scholar]
- Salagean, G.S. Subclasses of univalent functions. Lect. Notes Math. 1983, 1013, 362–372. [Google Scholar]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Salah, J.; Darus, M.A. A subclass of uniformly convex functions associated with a fractional calculus operator involving Caputo’s fractional differentiation. Acta Univ. Apulensis 2010, 24, 295–304. [Google Scholar]
- Vijaya, K.; Murugusundaramoorthy, G.; Breaz, D.; Oros, G.I.; El-Deeb, S.M. Ozaki-type bi-close-to-convex and bi-concave functions involving a modified Caputo’s fractional operator linked with a three-leaf function. Fractal Fract. 2024, 8, 220. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T. Certain class of bi-Bazilevic functions with bounded boundary rotation involving Salagean operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar] [CrossRef]
- Sharma, P.; Sivasubramanian, S.; Cho, N.E. Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation. AIMS Math. 2023, 8, 29535–29554. [Google Scholar] [CrossRef]
- Sharma, P.; Alharbi, A.; Sivasubramanian, S.; El-Deeb, S.M. On Ozaki close-to-convex functions with bounded boundary rotation. Symmetry 2024, 16, 839. [Google Scholar] [CrossRef]
- Tang, H.; Magesh, N.; Balaji, V.K.; Abirami, C. Coefficient inequalities for a comprehensive class of bi-univalent functions related with bounded boundary variation. J. Inequal. Appl. 2019, 2019, 237. [Google Scholar] [CrossRef]
- Li, Y.; Vijaya, K.; Murugusundaramoorthy, G.; Tang, H. On new subclasses of bi-starlike functions with bounded boundary rotation. AIMS Math. 2020, 5, 3346–3356. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K. Applications of the Horadam polynomials involving λ-pseudo-starlike bi-univalent functions associated with a certain convolution operator. Filomat 2023, 35, 4645–4655. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlǎ, L.-I. New applications of Gegenbauer polynomials on a new family of bi-Bazilevič functions governed by the q-Srivastava–Attiya operator. Mathematics 2023, 15, 1309. [Google Scholar] [CrossRef]
- Tayyah, A.S.; Hadi, S.H.; Wang, Z.G.; Lupas, A.A. Classes of Ma–Minda Type Analytic Functions Associated with a Kidney-Shaped Domain. AIMS Math 2025, 10, 22445–22470. [Google Scholar] [CrossRef]
- Thabet, S.T.; Kedim, I.; Abdalla, B.; Abdeljawad, T. The q-Analogues of Nonsingular Fractional Operators with Mittag-Leffler and Exponential Kernels. Fractals 2024, 32, 2440044. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanas, A.K.; El-Ityan, M.; Tayyah, A.S.; Catas, A. Certain Subclasses of Bi-Univalent Functions Involving Caputo Fractional Derivatives with Bounded Boundary Rotation. Mathematics 2025, 13, 3563. https://doi.org/10.3390/math13213563
Wanas AK, El-Ityan M, Tayyah AS, Catas A. Certain Subclasses of Bi-Univalent Functions Involving Caputo Fractional Derivatives with Bounded Boundary Rotation. Mathematics. 2025; 13(21):3563. https://doi.org/10.3390/math13213563
Chicago/Turabian StyleWanas, Abbas Kareem, Mohammad El-Ityan, Adel Salim Tayyah, and Adriana Catas. 2025. "Certain Subclasses of Bi-Univalent Functions Involving Caputo Fractional Derivatives with Bounded Boundary Rotation" Mathematics 13, no. 21: 3563. https://doi.org/10.3390/math13213563
APA StyleWanas, A. K., El-Ityan, M., Tayyah, A. S., & Catas, A. (2025). Certain Subclasses of Bi-Univalent Functions Involving Caputo Fractional Derivatives with Bounded Boundary Rotation. Mathematics, 13(21), 3563. https://doi.org/10.3390/math13213563

