Asymptotic Analysis and Blow-Up of Solution for a q-Kirchhoff-Type Equation with Nonlinear Boundary Damping and Source Terms with Variable Exponents
Abstract
1. Introduction
2. Preliminaries
2.1. Function Spaces
2.2. Mathematical Hypotheses
3. Global Existence
4. Decay Result
5. Global Non-Existence
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kirchhoff, G. Vorlesungen über Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Caroll, R.W.; Showalter, R.E. Singular and Degenerate Cauchy Problems; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Andrews, K.T.; Kuttler, K.L.; Shillor, M. Second order evolution equations with dynamic boundary conditions. J. Math. Anal. Appl. 1996, 197, 781–795. [Google Scholar] [CrossRef]
- Budak, B.M.; Samarskii, A.A.; Tikhonov, A.N. EA Collection of Problems on Mathematical Physics; Robson, A.R.M., Translator; The Macmillan Co.: New York, NY, USA, 1964. [Google Scholar]
- Conrad, F.; Morgul, O. stabilization of a exibl-e beam with a tip mass. SIAM J. Control Optim. 1998, 36, 1962–1986. [Google Scholar] [CrossRef]
- Chueshov, I. Long-time dynamics of Kirchhoff wave models with strong nonlinear damping. J. Differ. Equ. 2012, 252, 1229–1262. [Google Scholar] [CrossRef]
- Ding, P.; Yang, Z.; Li, Y. Global attractor of the Kirchhoff wave models with strong nonlinear damping. Appl. Math. Lett. 2017, 76, 40–45. [Google Scholar] [CrossRef]
- Lazo, P.P.D. Global solutions for a nonlinear wave equation. Appl. Math. Comput. 2008, 200, 596–601. [Google Scholar] [CrossRef]
- Ouaoua, A.; Khaldi, A.; Maouni, M. Global existence and stability of solution for a p-Kirchhoff type hyperbolic equation with variable exponents. Bol. Soc. Parana. MatemáTica 2022, 40, 1–12. [Google Scholar]
- Messaoudi, S.A. On the decay of solutions for a class of quasilinear hyperbolic equations with nonlinear damping and source terms. Math. Methods Appl. Sci. 2005, 28, 1819–1828. [Google Scholar] [CrossRef]
- Wu, Y.; Xue, X. Uniform decay rate estimates for a class of quasilinear hyperbolic equations with nonlinear damping and source terms. Appl. Anal. 2013, 92, 1169–1178. [Google Scholar] [CrossRef]
- Pişkin, E. On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms. Bound. Value Probl. 2015, 127, 2015. [Google Scholar] [CrossRef]
- Mokeddem, S.; Mansour, K.B. The rate at which the energy of solutions for a class of p-Laplacian wave equation decays. Int. J. Differ. Equ. 2015, 2015, 1–5. [Google Scholar] [CrossRef]
- Ouaoua, A.; Khaldi, A.; Maouni, M. Existence global and stability of solution for a p-Kirchhoff type hyperbolic equation with damping and source terms. Stud. Univ. Babeș-Bolyai Math. 2022, 67, 817–827. [Google Scholar] [CrossRef]
- Gheraibia, B.; Boumaza, N.; Al-Mahdi, A.M.; Al-Gharabli, M.M. Asymptotic analysis of solutions for a p-Kirchhoff type hyperbolic equation with dynamic boundary conditions. Mediterr. J. Math. 2025, 22, 164. [Google Scholar] [CrossRef]
- Martinez, P. A new method to decay rate estimates for dissipative systems. ESAIM Control Optim. Calc. Var. 1999, 4, 419–444. [Google Scholar] [CrossRef]
- Lars, D.; Harjulehto, P.; Hasto, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: New York, NY, USA, 2011. [Google Scholar]
- Růžička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Messaoudi, S.A.; Talahmeh, A.A.; Al-Shail, J.H. Nonlinear damped wave equation: Existence and blow-up. Comput. Math. Appl. 2017, 74, 3024–3041. [Google Scholar] [CrossRef]
- Ghegal, S.; Hamchi, I.; Messaoudi, S.A. Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities. Appl. Anal. 2020, 99, 1333–1343. [Google Scholar] [CrossRef]
- Park, S.-H.; Kang, J.-R. Stability analysis for wave equations with variable exponents and acoustic boundary conditions. Appl. Anal. 2024, 47, 14476–14486. [Google Scholar] [CrossRef]
- Messaoudi, S.; Talahmeh, A.; Al-Smail, J. Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities. Comput. Math. Appl. 2018, 76, 1863–1875. [Google Scholar] [CrossRef]
- Messaoudi, S. On the decay of solutions of a damped quasilinear wave equation with variable exponent nonlinearities. Math. Methods Appl. Sci. 2020, 43, 5114–5126. [Google Scholar] [CrossRef]
- Li, X.; Guo, B.; Liao, M. Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources. Comput. Math. Appl. 2020, 79, 1012–1022. [Google Scholar] [CrossRef]
- Li, F.; Liu, F. Blow-up of solutions to a quasilinear wave equation for high initial energy. Comptes Rendus Méc. 2018, 346, 402–407. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Talahmeh, A.A. Blow up in solutions of a quasilinear wave equation with variable-exponent nonlinearities. Math. Methods Appl. Sci. 2017, 40, 6976–6986. [Google Scholar] [CrossRef]
- Vitillaro, E. A potential well theory for the wave equation with nonlinear source and boundary damping terms. Glasg. Math. J. 2002, 44, 375–395. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Q. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Commun. Pure Appl. Anal. 2005, 4, 861–869. [Google Scholar] [CrossRef]
- Kass, N.J.; Rammaha, M.A. Local and global existence of solutions to a strongly damped wave equation of the p-Laplacian type. Commun. Pure Appl. Anal. 2018, 17, 1449–1478. [Google Scholar] [CrossRef]
- Boumaza, N.; Gheraibia, B. Global existence, nonexistence, and decay of solutions for a wave equation of p-laplacian type with weak and p-laplacian damping, nonlinear boundary delay and source terms. Asymptot. Anal. 2022, 129, 577–592. [Google Scholar] [CrossRef]
- Kamache, H.; Boumaza, N.; Gheraibia, B. Global existence, asymptotic behavior and blow up of solutions for a kirchhoff-type equation with nonlinear boundary delay and source terms. Turk. J. Math. 2023, 47, 1350–1361. [Google Scholar] [CrossRef]
- Abidin, M.Z.; Chen, J. Global Well-Posedness and Analyticity of Generalized Porous Medium Equation in Fourier-Besov-Morrey Spaces with Variable Exponent. Mathematics 2021, 9, 498. [Google Scholar] [CrossRef]
- Bao, H.-X.; Arain, M.; Shaheen, S.; Khan, H.I.; Usman, U.; Inc, M.; Yao, S.-W. Boundary-layer flow of heat and mass for Tiwari-Das nanofluid model over a flat plate with variable wall temperature. Therm. Sci. 2022, 26, 39–47. [Google Scholar] [CrossRef]
- Hussain, D.; Huang, H.; Shaheen, S.; Arain, M.B. Study of gyrotactic microorganism with activation energy and thermal radiation on horizontal porous plate under variable wall temperature: Sensitivity analysis. Int. Commun. Heat Mass Transf. 2025, 163, 108637. [Google Scholar] [CrossRef]
- Edmunds, D.; Rakosnik, J. Sobolev embeddings with variable exponent. Stud. Math. 2000, 143, 267–293. [Google Scholar] [CrossRef]
- Edmunds, D.; Rakosnik, J. Sobolev embeddings with variable exponent, II. Math. Nachrichten 2002, 246, 53–67. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Fan, X. Boundary trace embedding theorems for variable exponent Sobolev spaces. J. Math. Anal. Appl. 2008, 339, 1395–1412. [Google Scholar] [CrossRef]
- Antontsev, S.; Ferreira, J.; Pişkin, E.; Cordeiro, S.M. Existence and non-existence of solutions for Timoshenko-type equations with variable exponents. Nonlinear Anal. Real World Appl. 2021, 61, 103341. [Google Scholar] [CrossRef]
- Boumaza, N.; Gheraibia, B.; Liu, G. Global well-posedness of solutions for the p-laplacian hyperbolic type equation with weak and strong damping terms and logarithmic nonlinearity. Taiwan. J. Math. 2022, 26, 1235–1255. [Google Scholar] [CrossRef]
- Rahmoune, A. Existence and asymptotic stability for the semilinear wave equation with variable-exponent nonlinearities. J. Math. Phys. 2019, 60, 122701. [Google Scholar] [CrossRef]
- Rahmoune, A.; Benabederrahmane, B. On the viscoelastic equation with Balakrishnan-Taylor damping and nonlinear boundary/interior sources with variable-exponent nonlinearities. Stud. Univ. Babeș-Bolyai Math. 2020, 65, 599–639. [Google Scholar] [CrossRef]
- Komornik, V. Exact Controllability and Stabilization: The Multiplier Method; Masson-John Wiley: Paris, France, 1994. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boumaza, N.; Gheraibia, B.; Hajjej, Z.; Zhang, H.; Mesloub, S. Asymptotic Analysis and Blow-Up of Solution for a q-Kirchhoff-Type Equation with Nonlinear Boundary Damping and Source Terms with Variable Exponents. Mathematics 2025, 13, 3600. https://doi.org/10.3390/math13223600
Boumaza N, Gheraibia B, Hajjej Z, Zhang H, Mesloub S. Asymptotic Analysis and Blow-Up of Solution for a q-Kirchhoff-Type Equation with Nonlinear Boundary Damping and Source Terms with Variable Exponents. Mathematics. 2025; 13(22):3600. https://doi.org/10.3390/math13223600
Chicago/Turabian StyleBoumaza, Nouri, Billel Gheraibia, Zayd Hajjej, Hongwei Zhang, and Said Mesloub. 2025. "Asymptotic Analysis and Blow-Up of Solution for a q-Kirchhoff-Type Equation with Nonlinear Boundary Damping and Source Terms with Variable Exponents" Mathematics 13, no. 22: 3600. https://doi.org/10.3390/math13223600
APA StyleBoumaza, N., Gheraibia, B., Hajjej, Z., Zhang, H., & Mesloub, S. (2025). Asymptotic Analysis and Blow-Up of Solution for a q-Kirchhoff-Type Equation with Nonlinear Boundary Damping and Source Terms with Variable Exponents. Mathematics, 13(22), 3600. https://doi.org/10.3390/math13223600

