Adjusting for Publication Bias in Meta-Analysis with Continuous Outcomes: A Comparative Study
Abstract
1. Introduction
2. Adjustment Methods
2.1. Copas Selection Model
2.2. The p-Uniform Method
2.3. The PET-PEESE Method
2.4. Trim and Fill Method
2.5. The Limit Meta-Analysis Method
3. Case Study, Simulation, and Selection Models
3.1. Case Study
3.2. Simulation Model
3.2.1. Aggregate Simulation Model
3.2.2. Selection Model Based on Significant Effect Size
4. Results
4.1. Results for the Case Study
4.2. Results for the Simulation Study
4.2.1. Average Number of Studies After Selection
4.2.2. Copas Selection Model
4.2.3. The p-Uniform Method
4.2.4. PET-PEESE
4.2.5. Trim and Fill Method
4.2.6. The Limit Meta-Analysis Method
4.2.7. Random-Effects Model Using the DerSimonian–Laird Estimate
4.3. Comparison of Results of the Methods Correcting for Publication Bias
4.3.1. AMSE
4.3.2. Bias
4.3.3. Coverage Probability
5. Discussion
6. Conclusions
7. Study Limitations
Highlights
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Hedges, L.V. Modeling publication selection effects in meta-analysis. Stat. Sci. 1992, 7, 246–255. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 2000, 95, 89–98. [Google Scholar] [PubMed]
- Duval, S.; Tweedie, R. Trim and Fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Terrin, N.; Schmid, C.H.; Lau, J.; Olkin, I. Adjusting for publication bias in the presence of heterogeneity. Stat. Med. 2003, 22, 2113–2126. [Google Scholar] [CrossRef]
- Peters, J.L.; Sutton, A.J.; Jones, D.R.; Abrams, K.R.; Rushton, L. Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat. Med. 2007, 10, 4544–4562. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Borenstein, M. Effect sizes for continuous data. Effect sizes for dichtomous data. In The Handbook of Research Synthesis and Meta-Analysis, 2nd ed.; Cooper, H., Hedges, L.V., Valentine, J.C., Eds.; Russell Sage Foundation: New York, NY, USA, 2009; pp. 221–235. [Google Scholar]
- Iyengar, S.; Greenhouse, J.B. Selection models and the file drawer problem. Stat. Sci. 1988, 3, 109–117. [Google Scholar] [CrossRef]
- Vevea, J.L.; Hedges, L.V. A general linear model for estimating effect size in the presence of publication bias. Psychometrika 1995, 60, 419–435. [Google Scholar] [CrossRef]
- Vevea, J.L.; Woods, C.M. Publication Bias in Research Synthesis: Sensitivity Analysis Using A Priori Weight Functions. Psychol. Methods 2005, 10, 428–443. [Google Scholar] [CrossRef]
- Dear, K.B.; Begg, B. An approach for assessing publication bias prior to performing a meta-analysis. Stat. Sci. 1992, 7, 237–245. [Google Scholar] [CrossRef]
- Copas, J.; Shi, J.Q. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics 2000, 1, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Copas, J.; Shi, J.Q. A sensitivity analysis for publication bias in systematic reviews. Stat. Methods Med. Res. 2000, 10, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Simonsohn, U.; Nelson, L.D.; Simmons, J.P. p-Curve and Effect Size: Correcting for Publication Bias Using Only Significant Results. Perspect. Psychol. Sci. 2014, 9, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Simonsohn, U.; Nelson, L.D.; Simmons, J.P. P-curve: A Key to The File Drawer. J. Exp. Psychol. Gen. 2014, 143, 534–547. [Google Scholar] [CrossRef]
- van Assen, M.A.; van Aert, R.; Wicherts, J.M. Meta-analysis using effect size distributions of only statistically significant studies. Psychol. Methods 2015, 20, 293. [Google Scholar] [CrossRef]
- Hedges, L.V.; Vevea, J.L. Selection method approaches. In Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments; Rothstein, H.R., Sutton, A.J., Borenstein, M., Eds.; John Wiley & Sons: Chichester, UK, 2005; pp. 145–174. [Google Scholar]
- Jin, Z.C.; Zhou, X.-H.; He, J. Statistical methods for dealing with publication bias in meta-analysis. Stat. Med. 2015, 34, 343–360. [Google Scholar] [CrossRef]
- McShane, B.B.; Böckenholt, U.; Hansen, K.T. Adjusting for Publication Bias in Meta-Analysis: An Evaluation of Selection Methods and Some Cautionary Notes. Perspect. Psychol. Sci. 2016, 11, 730–749. [Google Scholar] [CrossRef]
- Sutton, A.J.; Song, F.; Gilbody, S.M.; Abrams, K.R. Modelling publication bias in meta-analysis: A review. Stat. Methods Med. Res. 2000, 9, 421–445. [Google Scholar] [CrossRef]
- Moreno, S.G.; Sutton, A.J.; Ades, A.E.; Cooper, N.J.; Abrams, K.R. Adjusting for publication biases across similar interventions performed well when compared with gold standard data. J. Clin. Epidemiol. 2011, 64, 1230–1241. [Google Scholar] [CrossRef]
- Stanley, T.D. Meta-Regression Methods for Detecting and Estimating Empirical Effects in the Presence of Publication Selection. Oxf. Bull. Econ. Stat. 2008, 70, 103–127. [Google Scholar] [CrossRef]
- Stanley, T.D.; Doucouliagos, H. Meta-regression approximations to reduce publication selection bias. Res. Synth. Methods 2013, 5, 60–78. [Google Scholar] [CrossRef]
- Alinaghi, N.; Reed, W.R. Meta-analysis and publication bias: How well does the FAT-PET-PEESE procedure work? Res. Synth. Methods 2018, 9, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Rücker, G.; Schwarzer, G.; Carpenter, J.R.; Binder, H.; Schumacher, M. Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis. Biostatistics 2011, 12, 122–142. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, G.; Carpenter, J.; Rücker, G. Empirical evaluation suggests Copas selection model preferable to trim-and-fill method for selection bias in meta-analysis. J. Clin. Epidemiol. 2010, 63, 282–288. [Google Scholar] [CrossRef]
- Reed, W.R. A Monte Carlo Analysis of Alternative Meta- Analysis Estimators in the Presence of Publication Bias. Economics 2015, 9, 20150030. [Google Scholar] [CrossRef]
- Carter, E.C.; Schönbrodt, F.D.; Gervais, W.M.; Hilgard, J. Correcting for bias in psychology: A comparison of meta-analytic methods. Adv. Methods Pract. Psychol. Sci. 2019, 2, 115–144. [Google Scholar] [CrossRef]
- Hong, S.; Reed, W.R. Using Monte Carlo experiments to select meta-analytic estimators. Res. Synth. Methods 2021, 12, 192–215. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- van Aert, R.C.M. Meta-Analysis Methods Correcting for Publication Bias. 2021. R Version 0.2.8. Available online: https://github.com/RobbievanAert/puniform/issues (accessed on 1 September 2023).
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Schwarzer, G.; Carpenter, J.R.; Rucker, G. Metasens: Statistical Methods for Sensitivity Analysis in Meta-Analysis. 2025. R Package Version 1.5-3. Available online: https://github.com/guido-s/metasens (accessed on 10 September 2023).
- Ackerman, J.M.; Nocera, C.C.; Bargh, J.A. Incidental haptic sensations influence social judgments and decisions. Science 2010, 328, 1712–1715. [Google Scholar] [CrossRef]
- Rabelo, A.L.A.; Keller, V.N.; Pilati, R.; Wicherts, J.M. No Effect of Weight on Judgments of Importance in the Moral Domain and Evidence of Publication Bias from a Meta-Analysis. PLoS ONE 2015, 10, e0134808. [Google Scholar] [CrossRef]
- Francis, G.; Tanzman, J.; Matthews, W.J. Excess success for psychology articles in the journal Science. PLoS ONE 2014, 9, e114255. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Chen, Y.; Piao, J. Maximum likelihood estimation and EM algorithm of copas-like selection model for publication bias correction. Biostatistics 2017, 18, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, J.O.; Adhikari, N.K.J.; Beyene, J. The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: A simulation study. BMC Med. Res. Methodol. 2008, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.P.; White, R.I.; Crowther, M.J. Using simulation studies to evaluate statistical methods. Stat. Med. 2019, 38, 2074–2102. [Google Scholar] [CrossRef]
- Satterthwaite, F.E. An approximate distribution of estimates of variance components. Biom. Bull. 1946, 2, 110–114. [Google Scholar] [CrossRef]
- Moscati, R.; Jehle, D.; Ellis, D.; Fiorello, A.; Landi, M. Positive-outcome bias: Comparison of emergency medicine and general medicine literatures. Acad. Emerg. Med. 1994, 1, 267–271. [Google Scholar] [CrossRef]
- Bartoš, F.; Maier, M.; Wagenmakers, E.J.; Doucouliagos, H.; Stanley, T.D. Robust Bayesian meta-analysis: Model-averaging across complementary publication bias adjustment methods. Res. Synth. Methods 2023, 14, 99–116. [Google Scholar] [CrossRef]
| Method | Mean Difference | Cohen’s d | Hedges’ g |
|---|---|---|---|
| Copas | 0.05875 (−0.06967; 0.18716) | 0.57825 (0.47577; 0.68074) | 0.57052 (0.46803; 0.67301) |
| p-Uniform | 0.33117 (0.15906; 0.47931) | 0.4786477 (−2.560318; 0.7836985) | 0.4597283 (−3.244159; 0.7352272 ) |
| PET-PEESE | −0.64935 (−1.7651; 0.46637) | −0.001796206 (−0.034486; 0.030893) | −0.001712641 (−0.033384; 0.029959) |
| Trim and Fill | 0.13392 (−0.05061; 0.31846) | 0.54305 (0.36237; 0.72373) | 0.54064 (0.35672; 0.72455) |
| Limit meta-analysis | 0.03091 (−0.06347; 0.05768) | 0.31356 (−0.56417; 0.66497) | 0.31356 (−0.54872; 0.68042) |
| DL | 0.53589 (0.40633; 0.66545) | 0.57825 (0.47577; 0.68074) | 0.57052 (0.46803; 0.67301) |
| m | Cohen’s d | Hedges’ g | ||||
|---|---|---|---|---|---|---|
| Equal Variance | Unequal Variance | Equal Variance | Unequal Variance | |||
| 10 | 15 | 0 | 8.23 | 8.09 | 8.04 | 8.08 |
| 1 | 8.22 | 8.08 | 8.02 | 8.07 | ||
| 5 | 8.21 | 8.01 | 8.01 | 7.98 | ||
| 30 | 0 | 8.11 | 8.09 | 8.20 | 8.00 | |
| 1 | 8.13 | 8.10 | 7.99 | 7.98 | ||
| 5 | 7.87 | 8.14 | 8.12 | 8.12 | ||
| 30 | 15 | 0 | 23.0 | 24.1 | 24.1 | 24.0 |
| 1 | 23.0 | 24.1 | 24.1 | 24.0 | ||
| 5 | 24.5 | 24.0 | 24.1 | 23.9 | ||
| 30 | 0 | 24.2 | 23.9 | 24.2 | 23.9 | |
| 1 | 24.2 | 24.1 | 23.7 | 23.8 | ||
| 5 | 23.4 | 24.1 | 23.9 | 24.1 | ||
| m | Mean Difference | Cohen’s d | Hedges’ g | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| AMSE | Bias | COV | AMSE | Bias | COV | AMSE | Bias | COV | |||
| 10 | 15 | 0 | 64.8 | 6.09 | 0.423 | 1.54 | 0.344 | 0.767 | 1.55 | 0.376 | 0.755 |
| 1 | 63.4 | 6.07 | 0.425 | 1.60 | 0.351 | 0.784 | 1.65 | 0.371 | 0.779 | ||
| 5 | 73.3 | 6.29 | 0.457 | 1.13 | 0.424 | 0.754 | 1.66 | 0.346 | 0.764 | ||
| 30 | 0 | 35.9 | 5.37 | 0.065 | 0.927 | 0.232 | 0.587 | 0.944 | 0.227 | 0.597 | |
| 1 | 36.3 | 5.37 | 0.068 | 0.928 | 0.226 | 0.586 | 0.974 | 0.285 | 0.584 | ||
| 5 | 52.0 | 6.09 | 0.180 | 1.37 | 0.390 | 0.666 | 1.37 | 0.325 | 0.703 | ||
| 30 | 15 | 0 | 51.0 | 6.39 | 0.101 | 1.11 | 0.420 | 0.763 | 0.895 | 0.321 | 0.801 |
| 1 | 50.7 | 6.36 | 0.103 | 1.13 | 0.424 | 0.754 | 0.906 | 0.324 | 0.797 | ||
| 5 | 47.5 | 6.10 | 0.188 | 1.04 | 0.372 | 0.842 | 1.021 | 0.384 | 0.833 | ||
| 30 | 0 | 30.0 | 5.30 | 0.011 | 0.520 | −0.146 | 0.651 | 0.503 | −0.138 | 0.657 | |
| 1 | 30.5 | 5.35 | 0.008 | 0.540 | −0.137 | 0.675 | 0.505 | −0.076 | 0.677 | ||
| 5 | 40.5 | 6.09 | 0.013 | 0.877 | 0.185 | 0.761 | 0.807 | 0.157 | 0.766 | ||
| m | Mean Difference | Cohen’s d | Hedges’ g | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| AMSE | Bias | COV | AMSE | Bias | COV | AMSE | Bias | COV | |||
| 10 | 15 | 0 | 133 | 11.1 | 0.064 | 14.2 | 3.58 | <0.05 | 13.6 | 3.51 | <0.05 |
| 1 | 134 | 11.1 | 0.067 | 14.3 | 3.60 | <0.05 | 13.8 | 3.53 | <0.05 | ||
| 5 | 156 | 11.9 | 0.064 | 13.2 | 3.57 | <0.05 | 16.2 | 3.84 | <0.05 | ||
| 30 | 0 | 48.0 | 6.72 | <0.05 | 11.2 | 3.24 | <0.05 | 10.8 | 3.18 | <0.05 | |
| 1 | 48.1 | 6.74 | <0.05 | 11.2 | 3.24 | <0.05 | 11.0 | 3.22 | <0.05 | ||
| 5 | 71.8 | 8.18 | <0.05 | 16.9 | 3.93 | <0.05 | 16.0 | 3.78 | <0.05 | ||
| 30 | 15 | 0 | 122 | 10.9 | <0.05 | 13.1 | 3.56 | <0.05 | 12.2 | 3.42 | <0.05 |
| 1 | 123 | 11.0 | <0.05 | 13.2 | 3.57 | <0.05 | 12.2 | 3.43 | <0.05 | ||
| 5 | 143 | 11.8 | <0.05 | 15.3 | 3.84 | <0.05 | 14.7 | 3.76 | <0.05 | ||
| 30 | 0 | 45.2 | 6.67 | <0.05 | 10.4 | 3.19 | <0.05 | 10.2 | 3.15 | <0.05 | |
| 1 | 46.0 | 6.72 | <0.05 | 10.6 | 3.21 | <0.05 | 10.5 | 3.19 | <0.05 | ||
| 5 | 68.3 | 8.13 | <0.05 | 15.9 | 3.92 | <0.05 | 15.3 | 3.85 | <0.05 | ||
| m | Mean Difference | Cohen’s d | Hedges’ g | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| AMSE | Bias | COV | AMSE | Bias | COV | AMSE | Bias | COV | |||
| 10 | 15 | 0 | 9703 | −5.78 | 0.965 | 6.51 | −1.67 | 0.895 | 6.79 | −1.68 | 0.892 |
| 1 | 9522 | −5.71 | 0.966 | 6.96 | −1.67 | 0.879 | 7.12 | −1.68 | 0.879 | ||
| 5 | 10,793 | −4.87 | 0.960 | 2.13 | −1.08 | 0.829 | 7.57 | −1.66 | 0.896 | ||
| 30 | 0 | 1456 | −3.48 | 0.966 | 2.33 | −0.851 | 0.825 | 2.41 | −0.926 | 0.819 | |
| 1 | 1515 | −4.03 | 0.967 | 2.47 | −0.877 | 0.820 | 2.45 | − 0.832 | 0.828 | ||
| 5 | 3072 | −2.29 | 0.967 | 4.61 | −1.16 | 0.850 | 4.43 | −1.26 | 0.849 | ||
| 30 | 15 | 0 | 2399 | −9.76 | 0.975 | 2.01 | −1.04 | 0.827 | 2.02 | −1.13 | 0.790 |
| 1 | 2469 | −9.78 | 0.976 | 2.13 | −1.08 | 0.829 | 2.19 | −1.17 | 0.782 | ||
| 5 | 2834 | −6.31 | 0.972 | 2.45 | −1.24 | 0.804 | 2.39 | −1.24 | 0.806 | ||
| 30 | 0 | 360 | −4.40 | 0.981 | 0.702 | −0.617 | 0.718 | 0.728 | −0.639 | 0.700 | |
| 1 | 360 | −4.25 | 0.978 | 0.715 | −0.624 | 0.725 | 0.662 | −0.567 | 0.744 | ||
| 5 | 740 | −2.45 | 0.975 | 0.982 | −0.700 | 0.812 | 1.045 | −0.775 | 0.786 | ||
| m | Mean Difference | Cohen’s d | Hedges’ g | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| AMSE | Bias | COV | AMSE | Bias | COV | AMSE | Bias | COV | |||
| 10 | 15 | 0 | 8120 | −1.67 | 0.960 | 5.59 | −1.17 | 0.929 | 5.42 | −1.18 | 0.929 |
| 1 | 8501 | −1.89 | 0.966 | 5.44 | −1.14 | 0.938 | 5.33 | −1.15 | 0.930 | ||
| 5 | 9766 | −1.78 | 0.956 | 6.89 | −1.26 | 0.923 | 6.73 | −1.28 | 0.925 | ||
| 30 | 0 | 1239 | −2.35 | 0.970 | 1.49 | −0.121 | 0.785 | 1.52 | −0.086 | 0.781 | |
| 1 | 1284 | −2.47 | 0.970 | 1.50 | −0.110 | 0.779 | 1.53 | −0.080 | 0.775 | ||
| 5 | 2911 | 0.026 | 0.958 | 2.60 | −0.560 | 0.837 | 2.58 | −0.573 | 0.837 | ||
| 30 | 15 | 0 | 1800 | −5.36 | 0.966 | 1.09 | −0.564 | 0.973 | 1.04 | −0.577 | 0.969 |
| 1 | 1829 | −5.57 | 0.966 | 1.12 | −0.568 | 0.967 | 1.10 | −0.589 | 0.965 | ||
| 5 | 2268 | −4.96 | 0.966 | 1.41 | −0.676 | 0.967 | 1.38 | −0.691 | 0.964 | ||
| 30 | 0 | 276 | −3.80 | 0.978 | 0.346 | 0.091 | 0.809 | 0.340 | 0.069 | 0.816 | |
| 1 | 307 | −3.34 | 0.979 | 0.344 | 0.081 | 0.809 | 0.339 | 0.059 | 0.813 | ||
| 5 | 728 | −1.55 | 0.977 | 0.436 | −0.183 | 0.929 | 0.437 | −0.200 | 0.929 | ||
| m | Mean Difference | Cohen’s d | Hedges’ g | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| AMSE | Bias | COV | AMSE | Bias | COV | AMSE | Bias | COV | |||
| 10 | 15 | 0 | 50.8 | 6.19 | 0.492 | 5.00 | 1.85 | 0.530 | 4.98 | 1.86 | 0.521 |
| 1 | 51.0 | 6.17 | 0.485 | 4.98 | 1.85 | 0.531 | 4.97 | 1.86 | 0.521 | ||
| 5 | 55.8 | 6.33 | 0.533 | 3.34 | 1.65 | 0.271 | 5.61 | 1.93 | 0.545 | ||
| 30 | 0 | 32.7 | 5.50 | 0.068 | 8.14 | 2.71 | 0.116 | 7.64 | 2.62 | 0.129 | |
| 1 | 32.9 | 5.51 | 0.081 | 8.08 | 2.69 | 0.125 | 8.14 | 2.71 | 0.123 | ||
| 5 | 42.7 | 6.11 | 0.224 | 10.5 | 2.97 | 0.230 | 9.42 | 2.79 | 0.266 | ||
| 30 | 15 | 0 | 48.7 | 6.53 | 0.141 | 3.36 | 1.66 | 0.264 | 2.67 | 1.46 | 0.322 |
| 1 | 48.4 | 6.52 | 0.147 | 3.34 | 1.65 | 0.271 | 2.64 | 1.45 | 0.326 | ||
| 5 | 45.2 | 6.15 | 0.228 | 2.98 | 1.52 | 0.369 | 2.97 | 1.52 | 0.359 | ||
| 30 | 0 | 30.9 | 5.46 | <0.05 | 6.67 | 2.50 | <0.05 | 6.47 | 2.46 | <0.05 | |
| 1 | 31.3 | 5.49 | <0.05 | 6.72 | 2.51 | <0.05 | 6.98 | 2.56 | <0.05 | ||
| 5 | 39.3 | 6.05 | <0.05 | 8.11 | 2.69 | <0.05 | 7.42 | 2.57 | 0.057 | ||
| m | Mean Difference | Cohen’s d | Hedges’ g | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| AMSE | Bias | COV | AMSE | Bias | COV | AMSE | Bias | COV | |||
| 10 | 15 | 0 | 99.1 | 9.00 | 0.883 | 3.32 | 1.67 | 0.992 | 3.25 | 1.64 | 0.992 |
| 1 | 99.8 | 9.05 | 0.882 | 3.37 | 1.68 | 0.995 | 3.28 | 1.65 | 0.994 | ||
| 5 | 125 | 10.1 | 0.879 | 3.95 | 1.84 | 0.914 | 3.89 | 1.81 | 0.912 | ||
| 30 | 0 | 37.4 | 5.51 | 0.803 | 1.70 | 1.18 | 0.503 | 1.62 | 1.16 | 0.503 | |
| 1 | 39.2 | 5.65 | 0.806 | 1.67 | 1.17 | 1.000 | 1.64 | 1.15 | 1.000 | ||
| 5 | 86.9 | 8.31 | 0.845 | 3.62 | 1.66 | 0.999 | 3.40 | 1.61 | 0.999 | ||
| 30 | 15 | 0 | 20.7 | 4.35 | 0.735 | 0.464 | 0.646 | 0.965 | 0.392 | 0.593 | 0.972 |
| 1 | 20.8 | 4.37 | 0.725 | 0.470 | 0.652 | 0.965 | 0.396 | 0.598 | 0.971 | ||
| 5 | 25.7 | 4.87 | 0.774 | 0.575 | 0.729 | 0.977 | 0.539 | 0.703 | 0.973 | ||
| 30 | 0 | 7.50 | 2.64 | 0.643 | 0.157 | 0.368 | 0.995 | 0.150 | 0.359 | 0.995 | |
| 1 | 7.96 | 2.71 | 0.646 | 0.165 | 0.379 | 0.992 | 0.160 | 0.371 | 0.991 | ||
| 5 | 18.3 | 4.12 | 0.717 | 0.445 | 0.637 | 0.990 | 0.417 | 0.617 | 0.991 | ||
| m | Mean Difference | Cohen’s d | Hedges’ g | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| AMSE | Bias | COV | AMSE | Bias | COV | AMSE | Bias | COV | |||
| 10 | 15 | 0 | 50.9 | 6.27 | 0.499 | 6.10 | 2.11 | 0.574 | 6.00 | 2.11 | 0.559 |
| 1 | 51.0 | 6.27 | 0.503 | 6.14 | 2.11 | 0.579 | 6.05 | 2.12 | 0.561 | ||
| 5 | 55.7 | 6.43 | 0.540 | 6.81 | 2.18 | 0.617 | 6.74 | 2.18 | 0.598 | ||
| 30 | 0 | 32.6 | 5.51 | 0.060 | 8.98 | 2.88 | 0.096 | 8.48 | 2.80 | 0.109 | |
| 1 | 33.0 | 5.53 | 0.065 | 9.02 | 2.88 | 0.110 | 9.08 | 2.90 | 0.099 | ||
| 5 | 42.2 | 6.13 | 0.209 | 11.8 | 3.22 | 0.268 | 10.6 | 3.02 | 0.305 | ||
| 30 | 15 | 0 | 50.1 | 6.78 | 0.092 | 5.93 | 2.31 | 0.154 | 4.69 | 2.03 | 0.221 |
| 1 | 50.1 | 6.78 | 0.094 | 5.94 | 2.32 | 0.161 | 4.70 | 2.04 | 0.225 | ||
| 5 | 45.5 | 6.36 | 0.199 | 5.24 | 2.13 | 0.308 | 5.14 | 2.11 | 0.281 | ||
| 30 | 0 | 30.8 | 5.48 | <0.05 | 8.37 | 2.85 | <0.05 | 8.14 | 2.81 | <0.05 | |
| 1 | 31.2 | 5.51 | <0.05 | 8.44 | 2.86 | <0.05 | 8.62 | 2.89 | <0.05 | ||
| 5 | 39.3 | 6.13 | <0.05 | 10.8 | 3.20 | <0.05 | 9.85 | 3.05 | <0.05 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalik, O. Adjusting for Publication Bias in Meta-Analysis with Continuous Outcomes: A Comparative Study. Mathematics 2025, 13, 3487. https://doi.org/10.3390/math13213487
Almalik O. Adjusting for Publication Bias in Meta-Analysis with Continuous Outcomes: A Comparative Study. Mathematics. 2025; 13(21):3487. https://doi.org/10.3390/math13213487
Chicago/Turabian StyleAlmalik, Osama. 2025. "Adjusting for Publication Bias in Meta-Analysis with Continuous Outcomes: A Comparative Study" Mathematics 13, no. 21: 3487. https://doi.org/10.3390/math13213487
APA StyleAlmalik, O. (2025). Adjusting for Publication Bias in Meta-Analysis with Continuous Outcomes: A Comparative Study. Mathematics, 13(21), 3487. https://doi.org/10.3390/math13213487
