Approximate Fiber Products of Schemes and Their Étale Homotopical Invariants
Abstract
1. Introduction
1.1. Background and Motivation
1.2. Proposed Work
2. Preliminaries
2.1. Classical Fiber Products and the Étale Topology
2.2. The Étale Fundamental Group and Torsors
2.3. Étale Cohomology and the Classification of Torsors
3. Algebraic Invariants of Morphism Mismatch
3.1. The Étale Mismatch Torsor
3.2. From Bundles to Cocycles: The Characteristic Class
3.3. The Classification Theorem
3.4. The Mismatch Filtration and the Order of Approximation
4. Applications of the Étale Mismatch Torsors
4.1. Generalized Howe Curves over Finite Fields
4.2. The Étale Homotopical Analysis
4.3. Order of Mismatch for Two Elliptic Curves
4.4. Connections to Isogeny and Point Counting
4.4.1. A Homotopical Perspective on Isogeny
4.4.2. Approximate Point Counting
4.5. Reinterpreting LLM Semantic Spaces
- The image space X (e.g., of images) and text space Y (e.g., of text tokens) can be modeled as schemes.
- The abstract concept space S (e.g., multimodal concepts) is the base scheme. In our example, this was .
- The embedding functions (image recognition) and (text comprehension) are morphisms of schemes.
5. Related Work
5.1. Metric and Analytic Approaches to Approximation
5.2. Homotopical and Higher Categorical Frameworks
5.3. Deformation Theory and Infinitesimal Obstructions
6. Final Remarks
6.1. Summary of Contributions
6.2. Future Directions and Open Questions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartshorne, R. Algebraic Geometry; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1977; Volume 52. [Google Scholar]
- Ascher, K.; Bejleri, D.; Inchiostro, G.; Patakfalvi, Z. Wall crossing for moduli of stable log pairs. Ann. Math. 2023, 198, 825–866. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Robinson, M.; Dey, S.; Chiang, T. Token embeddings violate the manifold hypothesis. arXiv 2025, arXiv:2504.01002. [Google Scholar] [CrossRef]
- Fefferman, C.; Mitter, S.; Narayanan, H. Testing the manifold hypothesis. J. Am. Math. Soc. 2016, 29, 983–1049. [Google Scholar] [CrossRef]
- Zhao, D. Approximate Fiber Product: A Preliminary Algebraic-Geometric Perspective on Multimodal Embedding Alignment. arXiv 2024, arXiv:2412.00373. [Google Scholar] [CrossRef]
- Bradley, T.D.; Terilla, J.; Vlassopoulos, Y. An enriched category theory of language: From syntax to semantics. La Matematica 2022, 1, 551–580. [Google Scholar] [CrossRef]
- Zhao, D. TokenBlowUp: Resolving Representational Singularities in LLM Token Spaces via Monoidal Transformations. arXiv 2025, arXiv:2507.19747. [Google Scholar]
- Katsura, T. Decomposed Richelot isogenies of Jacobian varieties of curves of genus 3. J. Algebra 2021, 588, 129–147. [Google Scholar] [CrossRef]
- Katsura, T.; Takashima, K. Decomposed Richelot isogenies of Jacobian varieties of hyperelliptic curves and generalized Howe curves. Commentarii Mathematici Universitatis Sancti Pauli 2024, 72, 3–17. [Google Scholar]
- Grothendieck, A. Revêtements étales et Groupe Fondamental (SGA 1); Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1971; Volume 224. [Google Scholar]
- Milne, J.S. Étale Cohomology; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA, 1980; Volume 33. [Google Scholar]
- Hassett, B. Moduli spaces of weighted pointed stable curves. Adv. Math. 2003, 173, 316–352. [Google Scholar] [CrossRef]
- Kollár, J.; Mori, S. Birational Geometry of Algebraic Varieties; Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 1998; Volume 134. [Google Scholar] [CrossRef]
- Donaldson, S.K.; Sun, S. Gromov-Hausdorff limits of Kähler-Einstein metrics and algebraic geometry. Acta Math. 2014, 213, 63–106. [Google Scholar] [CrossRef]
- Hrushovski, E.; Loeser, F. Non-Archimedean Tame Topology and Stably Dominated Types; Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 2016; Volume 192. [Google Scholar] [CrossRef]
- Toën, B.; Vezzosi, G. Homotopical Algebraic Geometry II: Geometric Stacks and Applications; Memoirs of the American Mathematical Society; American Mathematical Society: Providence, RI, USA, 2008; Volume 193. [Google Scholar] [CrossRef]
- Bhatt, B.; Scholze, P. The pro-étale topology for schemes. arXiv 2013, arXiv:1309.1198. [Google Scholar] [CrossRef]
- Artin, M. Versal deformations and algebraic stacks. Invent. Math. 1974, 27, 165–189. [Google Scholar] [CrossRef]
- Deligne, P.; Mumford, D. The irreducibility of the space of curves of given genus. Publications Mathématiques de l’IHÉS 1969, 36, 75–109. [Google Scholar] [CrossRef]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D. Approximate Fiber Products of Schemes and Their Étale Homotopical Invariants. Mathematics 2025, 13, 3448. https://doi.org/10.3390/math13213448
Zhao D. Approximate Fiber Products of Schemes and Their Étale Homotopical Invariants. Mathematics. 2025; 13(21):3448. https://doi.org/10.3390/math13213448
Chicago/Turabian StyleZhao, Dongfang. 2025. "Approximate Fiber Products of Schemes and Their Étale Homotopical Invariants" Mathematics 13, no. 21: 3448. https://doi.org/10.3390/math13213448
APA StyleZhao, D. (2025). Approximate Fiber Products of Schemes and Their Étale Homotopical Invariants. Mathematics, 13(21), 3448. https://doi.org/10.3390/math13213448
 
        


