Quantitative Weighted Estimates of the Lq-Type Rough Singular Integral Operator and Its Commutator
Abstract
1. Introduction
2. Main Results
3. Lemmas
3.1. Some Preliminary Lemmas
3.2. The Decay Estimates for on Space
4. Proof of Theorem 1 and Corollary 1
5. Proof of Theorem 2
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Calderón, A.P.; Zygmund, A. On the existence of certain singular integrals. Acta Math. 1952, 88, 85–139. [Google Scholar] [CrossRef]
- Calderón, A.P.; Zygmund, A. On singular integrals. Am. J. Math. 1956, 78, 289–309. [Google Scholar] [CrossRef]
- Ricci, F.; Weiss, G. A characterization of . Proceedings of Symposia in Pure Mathematics; American Mathematical Society: Providence, RI, USA, 1979; Volume 35, pp. 289–294. [Google Scholar]
- Seeger, A. Singular integral operators with rough convolution kernels. J. Am. Math. Soc. 1996, 9, 95–105. [Google Scholar] [CrossRef]
- Christ, M.; Rubio de Francia, J.L. Weak type (1,1) bounds for rough operators. II. Invent. Math. 1988, 93, 225–237. [Google Scholar] [CrossRef]
- Duoandikoetxea, J. Weighted norm inequalities for homogeneous singular integrals. Trans. Am. Math. Soc. 1993, 336, 869–880. [Google Scholar] [CrossRef]
- Duoandikoetxea, J.; Rubio de Francia, J.L. Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 1986, 84, 541–561. [Google Scholar] [CrossRef]
- Grafakos, L.; Stefanov, A. Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ. Math. J. 1998, 47, 455–469. [Google Scholar] [CrossRef]
- Hu, G.E.; Lai, X.D.; Tao, X.X.; Xue, Q.Y. An endpoint estimate for the maximal Calderón commutator with rough kernel. Math. Ann. 2025, 392, 2469–2502. [Google Scholar] [CrossRef]
- Liang, R.; Zheng, T.T.; Tao, X.X. Algebras of Calderón-Zygmund operators associated with para-accretive functions on spaces of normal homogeneous type. Mathematics 2025, 13, 1030. [Google Scholar] [CrossRef]
- Chen, J.C.; Hu, G.E.; Tao, X.X. boundedness for a class of nonstandard singular integral operators. J. Fourier. Anal. Appl. 2024, 30, 50. [Google Scholar] [CrossRef]
- Grafakos, L. Modern Fourier Analysis, 2nd ed.; Springer: New York, NY, USA, 2009; p. xvi + 504. ISBN 978-0-387-09433-5. [Google Scholar]
- Fujii, N. Weighted bounded mean oscillation and singular integrals. Math. Japon. 1977, 22, 529–534. [Google Scholar]
- Wilson, J.M. Weighted inequalities for the dyadic square function without dyadic A∞. Duke Math. J. 1987, 55, 19–50. [Google Scholar] [CrossRef]
- Buckley, S.M. Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 1993, 340, 253–272. [Google Scholar] [CrossRef]
- Astala, K.; Iwaniec, T.; Saksman, E. Beltrami operators in the plane. Duke Math. J. 2001, 107, 27–56. [Google Scholar] [CrossRef]
- Petermichl, S.; Volberg, A. Heating of the Ahlfors–Beurling operator: Weakly quasiregular maps on the plane are quasiregular. Duke Math. J. 2002, 112, 281–305. [Google Scholar] [CrossRef]
- Hytönen, T.P.; Roncal, L.; Tapiola, O. Quantitative weighted estimates for rough homogeneous singular integrals. Israel J. Math. 2017, 218, 133–164. [Google Scholar] [CrossRef]
- Li, K.W.; Pérez, C.; Rivera-Ríos, I.P.; Roncal, L. Weighted norm inequalities for rough singular integral operators. J. Geom. Anal. 2019, 29, 2526–2564. [Google Scholar] [CrossRef]
- Lerner, A.K.; Ombrosi, S.; Pérez, C. Sharp A1 bounds for Calderón-Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden. Int. Math. Res. Not. IMRN 2008, 2008, rnm161. [Google Scholar] [CrossRef]
- Pérez, C.; Rivera-Ríos, I.P.; Roncal, L. A1 theory of weights for rough homogeneous singular integrals and commutators. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2019, 19, 169–190. [Google Scholar] [CrossRef]
- Rivera, R.; Israel, P. Improved A1-A∞ and related estimates for commutators of rough singular integrals. Proc. Edinb. Math. Soc. 2018, 61, 1069–1086. [Google Scholar] [CrossRef]
- Coifman, R.; Rochberg, R.; Weiss, G. Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976, 103, 611–635. [Google Scholar] [CrossRef]
- Alvarez, J.; Bagby, R.; Kurtz, D.; Pérez, C. Weighted estimates for commutators of linear operators. Studia Math. 1993, 104, 195–209. [Google Scholar] [CrossRef]
- Hu, G.E. Lp boundedness for the commutator of a homogeneous singular integral operator. Studia Math. 2003, 154, 13–27. [Google Scholar] [CrossRef]
- Tao, X.X.; Hu, G.E. A bilinear sparse domination for the maximal singular integral operators with rough kernels. J. Geom. Anal. 2024, 34, 162. [Google Scholar] [CrossRef]
- Hu, G.E.; Tao, X.X. An endpoint estimate for the commutators of singular integral operators with rough kernels. Potential Anal. 2023, 58, 241–262. [Google Scholar] [CrossRef]
- Tao, X.X.; Lv, P.Z. Quantitative weighted estimates for singular integral operators with rough kernels. arXiv 2025, arXiv:1510.05789. [Google Scholar]
- Lerner, A.K. On pointwise estimates involving sparse operators. N. Y. J. Math. 2016, 22, 341–349. [Google Scholar] [CrossRef]
- Bergh, J.; Löfström, J. Interpolation Spaces. An Introduction; Grundlehren der Mathematischen Wissenschaften, No. 223; Springer: Berlin, Germany; New York, NY, USA, 1976. [Google Scholar]
- John, F.; Nirenberg, L. On functions of bounded mean oscillation. Comm. Pure Appl. Math. 1961, 14, 415–426. [Google Scholar] [CrossRef]
- Chung, D.; Pereyra, M.C.; Perez, C. Sharp bounds for general commutators on weighted Lebesgue spaces. Trans. Am. Math. Soc. 2012, 364, 1163–1177. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Lv, P.; Tao, X. Quantitative Weighted Estimates of the Lq-Type Rough Singular Integral Operator and Its Commutator. Mathematics 2025, 13, 3434. https://doi.org/10.3390/math13213434
Wang S, Lv P, Tao X. Quantitative Weighted Estimates of the Lq-Type Rough Singular Integral Operator and Its Commutator. Mathematics. 2025; 13(21):3434. https://doi.org/10.3390/math13213434
Chicago/Turabian StyleWang, Shuo, Peize Lv, and Xiangxing Tao. 2025. "Quantitative Weighted Estimates of the Lq-Type Rough Singular Integral Operator and Its Commutator" Mathematics 13, no. 21: 3434. https://doi.org/10.3390/math13213434
APA StyleWang, S., Lv, P., & Tao, X. (2025). Quantitative Weighted Estimates of the Lq-Type Rough Singular Integral Operator and Its Commutator. Mathematics, 13(21), 3434. https://doi.org/10.3390/math13213434

