On the Concept of Algebraic Crystallography
Abstract
1. Introduction
2. First Examples from the Unital Setting
2.1. General Unital Setting
2.2. Special Unital Settings
2.3. Subtractive Categories
3. Further Examples from the Mal’tsev Setting
3.1. General Mal’tsev Setting
3.2. Special Mal’tsev Settings
4. Fiberwise Extension of the Notion of Algebraic Crystallography
5. Congruence Hyperextensible and Gumm Categories
5.1. Congruence Modular Varieties and Gumm Categories
5.2. Conruence Hyperextensible Categories
5.3. Congruence Distributive Varieties and Categories
6. First Observations on the Algebraic Crystallography
6.1. Commutativity
6.2. A Universal and Invisible Example
6.3. Trivializing Crystallographic Context
6.4. Paradoxical Aspect of the Notion
7. Some Very Large Abelian and Naturally Mal’tsev Categories
7.1. A Very Large Abelian Category
7.2. A Very Large Exact Naturally Mal’tsev Category
8. Open Questions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mac Lane, S. Category for the Working Mathematician; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 1971; Volume 5, 262p. [Google Scholar]
- Eckmann, B.; Hilton, P.J. Group-like structures in general categories I. Math. Ann. 1962, 145, 227–255. [Google Scholar] [CrossRef]
- Bourn, D. Intrinsic centrality and associated classifying properties. J. Algebra 2002, 256, 126–145. [Google Scholar] [CrossRef]
- Janelidze, Z. Subtractive categories. Appl. Categ. Struct. 2005, 13, 343–350. [Google Scholar] [CrossRef]
- Smith, J.D.H. Malcev Varieties; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 554. [Google Scholar]
- Bourn, D. On congruence modular varieties and Gumm categories. Commun. Algebr. 2022, 50, 2377–2407. [Google Scholar] [CrossRef]
- Gumm, H.P. Geometrical methods in congruence modular varieties. Mem. Am. Math. Soc. 1983, 45, 286. [Google Scholar]
- Borceux, F.; Bourn, D. Malcev, Protomodular, Homological and Semi-Abelian Categories, Kluwer, Mathematics and Its Applications; Springer: Berlin/Heidelberg, Germany, 2004; Volume 566, 479p. [Google Scholar]
- Pixley, A.F. Distributivity and permutability of congruences in equational classes of algebras. Proc. Am. Math. Soc. 1963, 14, 105–109. [Google Scholar] [CrossRef]
- Ursini, A. On subtractive varieties. Algebra Universalis 1994, 31, 204–222. [Google Scholar] [CrossRef]
- Bourn, D.; Janelidze, Z. Subtractive categories and extended subtractions. Appl. Categ. Struct. 2009, 17, 302–327. [Google Scholar] [CrossRef]
- Carboni, A.; Lambek, J.; Pedicchio, M.C. Diagram chasing in Malcev categories. J. Pure Appl. Algebra 1990, 69, 271–284. [Google Scholar] [CrossRef]
- Carboni, A.; Pedicchio, M.C.; Pirovano, N. Internal graphs and internal groupoids in Mal’tsev categories. In Proceedings of the Canadian Mathematical Society Conference Proceedings, Ottawa, ON, Canada, 19–22 August 1992; Volume 13, pp. 97–109. [Google Scholar]
- Johnstone, P.T. Affine categories and naturally Malcev categories. J. Pure Appl. Algebra 1989, 61, 251–256. [Google Scholar] [CrossRef]
- Bourn, D.; Gran, M. Normal sections and direct product decompositions. Commun. Algebra 2004, 32, 3825–3842. [Google Scholar] [CrossRef]
- Bourn, D.; Gran, M. Categorical aspects of modularity. In Galois Theory, Hopf Algebras, and Semiabelian Categories; Janelidze, G., Pareigis, B., Tholen, W., Eds.; Fields Institute Communications: Providence, RI, USA, 2004; Volume 43, pp. 77–100. [Google Scholar]
- Bourn, D. Fibration of points and congruence modularity. Algebra Universalis 2005, 52, 403–429. [Google Scholar] [CrossRef]
- Slomiński, J. On the determining of the form of congruences in abstract algebras with equationally definable constant elements. Fundam. Math. 1960, 48, 325–341. [Google Scholar] [CrossRef]
- Hoefnagel, M.A. Majority categories. Theory Appl. Categ. 2019, 34, 249–268. [Google Scholar] [CrossRef]
- Abbott, J.C. Semi-boolean algebra. Math. Vesnik 1967, 4, 177–198. [Google Scholar]
- Johnstone, P.T.; Pedicchio, M.C. Remarks on continuous Malcev algebras. Rend. Univ. Trieste 1993, 25, 277–297. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourn, D. On the Concept of Algebraic Crystallography. Mathematics 2025, 13, 3404. https://doi.org/10.3390/math13213404
Bourn D. On the Concept of Algebraic Crystallography. Mathematics. 2025; 13(21):3404. https://doi.org/10.3390/math13213404
Chicago/Turabian StyleBourn, Dominique. 2025. "On the Concept of Algebraic Crystallography" Mathematics 13, no. 21: 3404. https://doi.org/10.3390/math13213404
APA StyleBourn, D. (2025). On the Concept of Algebraic Crystallography. Mathematics, 13(21), 3404. https://doi.org/10.3390/math13213404

