-Joint Numerical Radius Bounds for Operator Pairs in Semi-Hilbert Spaces with Applications
Abstract
1. Introduction
2. Upper Bounds for -Euclidean Numerical Radius
3. Lower Bounds
4. Applications to a Single Operator
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Metric properties of projections in semi-Hilbertian spaces. Integral Equ. Oper. Theory 2008, 62, 11–28. [Google Scholar] [CrossRef]
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 2008, 428, 1460–1475. [Google Scholar] [CrossRef]
- Baklouti, H.; Feki, K.; Sid Ahmed, O.A.M. Joint normality of operators in semi-Hilbertian spaces. Linear Algebra Appl. 2018, 555, 266–284. [Google Scholar] [CrossRef]
- Baklouti, H.; Namouri, S. Closed operators in semi-Hilbertian spaces. Linear Multilinear Algebra 2021, 69, 2795–2809. [Google Scholar] [CrossRef]
- Bermúdez, T.; Saddi, A.; Zaway, H. A, m-isometries on Hilbert spaces. Linear Algebra Appl. 2018, 540, 95–111. [Google Scholar] [CrossRef]
- Feki, K. Some A-numerical radius inequalities for d × d operator matrices. Rend. Circ. Mat. Palermo Ser. 2 2022, 71, 85–103. [Google Scholar] [CrossRef]
- Feki, K. Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 2020, 11, 929–946. [Google Scholar] [CrossRef]
- Scholtz, F.G.; Geyer, H.B.; Hahne, F.J.W. Quasi-Hermitian operators in quantum theory and the variational principle. Ann. Phys. 1992, 213, 74–101. [Google Scholar] [CrossRef]
- Xu, Q.; Ye, Z.; Zamani, A. Some upper bounds for the A-numerical radius of 2 × 2 block matrices. Adv. Oper. Theory 2021, 6, 1. [Google Scholar] [CrossRef]
- Krejčiřík, D.; Lotoreichik, V.; Znojil, M. The minimally anisotropic metric operator in quasi-Hermitian quantum theory. Proc. R. Soc. A 2018, 474, 20180264. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermitian representation of quantum theory. Int. J. Geom. Methods Mod. Phys. 2010, 7, 1191–1306. [Google Scholar] [CrossRef]
- Azizov, T.Y.; Iokhvidov, I.S. Linear Operators in Spaces with an Indefinite Metric; Wiley: Chichester, UK, 1989. [Google Scholar]
- Antoine, J.P.; Trapani, C. Partial inner product spaces, metric operators, and generalized hermiticity. J. Phys. A Math. Theor. 2013, 46, 025204. [Google Scholar] [CrossRef]
- Faghih-Ahmadi, M.; Gorjizadeh, F. A-numerical radius of A-normal operators in semi-Hilbertian spaces. Ital. J. Pure Appl. Math. 2016, 36, 73–78. [Google Scholar]
- Qiao, H.; Hai, G.; Chen, A. Improvements of A-numerical radius for semi-Hilbertian space operators. J. Math. Inequal. 2024, 18, 791–810. [Google Scholar] [CrossRef]
- Moslehian, M.S.; Xu, Q.; Zamani, A. Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces. Linear Algebra Appl. 2020, 591, 299–321. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces. Linear Algebra Appl. 2006, 419, 256–264. [Google Scholar] [CrossRef]
- Abu-Omar, A.; Kittaneh, F. Numerical radius inequalities for n × n operator matrices. Linear Algebra Appl. 2015, 468, 18–26. [Google Scholar] [CrossRef]
- Al-Dolat, M.; Kittaneh, F. Numerical radius inequalities for certain operator matrices. J. Anal. 2024, 32, 2939–2951. [Google Scholar] [CrossRef]
- Saddi, A. A-normal operators in semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 2012, 9, 1–12. [Google Scholar]
- Bhunia, P.; Nayak, R.K. Refinements of A-numerical radius inequalities and their applications. Adv. Oper. Theory 2020, 5, 1498–1511. [Google Scholar] [CrossRef]
- Kittaneh, F.; Zamani, A. Bounds for A-numerical radius based on an extension of A-Buzano inequality. J. Comput. Appl. Math. 2023, 426, 115070. [Google Scholar] [CrossRef]
- Kittaneh, F.; Zamani, A. A refinement of A-Buzano inequality and applications to A-numerical radius inequalities. Linear Algebra Appl. 2023, 664, 226–238. [Google Scholar] [CrossRef]
- Rout, N.C.; Sahoo, S.; Mishra, D. On A-numerical radius inequalities for 2 × 2 operator matrices. Linear Multilinear Algebra 2022, 70, 2672–2692. [Google Scholar] [CrossRef]
- Bhunia, P.; Feki, K.; Paul, K. A-numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications. Bull. Iran. Math. Soc. 2021, 47, 435–457. [Google Scholar] [CrossRef]
- Zamani, A. A-numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl. 2019, 578, 159–183. [Google Scholar] [CrossRef]
- Guesba, M. A-numerical radius inequalities via Dragomir inequalities and related results. Novi Sad J. Math. 2023, 53, 241–250. [Google Scholar] [CrossRef]
- Guesba, M.; Bhunia, P.; Paul, K. A-numerical radius inequalities and A-translatable radii of semi-Hilbert space operators. Filomat 2023, 37, 3443–3456. [Google Scholar] [CrossRef]
- Guesba, M. Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators. Boll. Unione Mat. Ital. 2021, 14, 681–692. [Google Scholar] [CrossRef]
- Daptari, S.; Kittaneh, F.; Sahoo, S. New A-numerical radius equalities and inequalities for certain operator matrices and applications. Results Math. 2025, 80, 22. [Google Scholar] [CrossRef]
- Ahmad, N. (γ, δ)-B-norm and B-numerical radius inequalities in semi-Hilbertian spaces. Iran. J. Sci. 2023, 47, 1765–1769. [Google Scholar] [CrossRef]
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Lifting properties in operator ranges. Acta Sci. Math. 2009, 75, 635–653. [Google Scholar]
- Bhunia, P.; Paul, K.; Nayak, R.K. On inequalities for A-numerical radius of operators. Electron. J. Linear Algebra 2020, 36, 143–157. [Google Scholar]
- Douglas, R.G. On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 1966, 17, 413–416. [Google Scholar] [CrossRef]
- Feki, K. A note on the A-numerical radius of operators in semi-Hilbert spaces. Arch. Math. 2020, 115, 535–544. [Google Scholar] [CrossRef]
- Feki, K. Inequalities for the A-joint numerical radius of two operators and their applications. Hacet. J. Math. Stat. 2024, 53, 22–39. [Google Scholar] [CrossRef]
- Boas, R.P. A general moment problem. Am. J. Math. 1941, 63, 361–370. [Google Scholar] [CrossRef]
- Bellman, R. Almost orthogonal series. Bull. Am. Math. Soc. 1944, 50, 517–519. [Google Scholar] [CrossRef]
- Dragomir, S.S. On the Boas-Bellman inequality in inner product spaces. Bull. Aust. Math. Soc. 2004, 69, 217–225. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baazeem, A.; Dragomir, S.S.; Feki, K.
Baazeem A, Dragomir SS, Feki K.
Baazeem, Amani, Silvestru Sever Dragomir, and Kais Feki.
2025. "
Baazeem, A., Dragomir, S. S., & Feki, K.
(2025).

